Home  Contact Us  Orders: US  Orders: other countries  Review Shopping Cart 
Serious mathematics, written with the reader in mind. Matrix Editions Current Books

Praise for Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach The fourth edition is even better! "When reading this book, I constantly was aware of the fact that I would have benefited immensely if I had gotten my hands on it when I was an undergraduate... I was very impressed with the depth, clarity and ambition of this book. It respects its readers, it assumes that they are intelligent and naturally curious about beautiful mathematics. Then it provides them with all the tools necessary to learn multivariable calculus, linear algebra and basic analysis." — Gizem Karaali, assistant professor of Mathematics at Pomona College (MAA Review of 3rd edition) Read entire review "...a real gem. It has a breadth and depth that is rarely seen in undergraduate texts, and it teaches real mathematics from a researcher's point of view instead of the standard offtheshelf recipes that have little use outside the classroom....The book is cleverly structured, and allows one to omit the most difficult topics and yet have a coherent text on a more standard level..." — from review in the MAA Monthly, October 2003. Read more "Superb on all counts! Undergraduate through professionals.'' — review of the first edition in Choice (journal of the American Library Association) Full text of review in Choice "I've
begun reading the book and have quickly come to truly love its
approach. As a high school calculus teacher, I've read many a
linear algebra text and many multivariate calculus books as well.
A former student of mine, currently an undergraduate ... at Harvard,
recommended yours... and it has lived up to all the praise he has
heaped upon it.
"A great book. I love books that cut through the smog and show that math is not all that hard. It is a bonus when they are entertaining." — Dr. Ralph Kelsey, Ohio University "Although I finished a Ph.D. in electrical engineering several years ago, I found your textbook so insightful that I want to work through the problems. I rank your book among the top 10 technical books I've ever read. Your use of the margin notes is extremely useful.'' —Jose Unpingco, Los Angeles. "The book's chief asset is its overall structure and philosophy; it does things right. It is the unique tactic of engaging rather than insulting the students' intelligence that makes the book great.'' — Professor Robert Ghrist, Georgia Institute of Technology." "A gold mine of information not available in my other texts." — Professor Thomas Tredon, Lord Fairfax Community College "My research
work is focused on evolutionary biology, and I teach population
genetics and evolution. Thus, my students require a good background on
mathematics. Your book Vector Calculus, Linear Algebra and
Differential Forms: a Unified Approach is fantastic. It has
helped me a lot. Some insights and observations (brilliant,
from a pedagogical point of view) are rarely found, if ever, in other
books. My warmest congratulations.'' — Luís Serra,
Professor of Genetics at the University of Barcelona. "A marvelous book. What a great idea to combine all those topics!'' — George Fegan, chair, Department of Applied Mathematics, Santa Clara University. "This is a fantastic textbook. It seems to attack directly every hurdle I always got stuck on in the past and explain it like someone is watching a movie. Somehow it changes one's whole view of analysis.'' — Harry Hirsch. "I bought your book because I was interested in a down to earth, elementary exposition of differential forms, which shows one how to do practical calculations with these objects. I later found out that it is full of other wonderful, handson explanations of many things I had already learned but found a little unsatisfactory. For instance, as far as I remember, in no other textbook I consulted have I seen a statement of the inverse function theorem that say something about the "size" of the domain... Your book always has an eye on the practical implications of the concepts developed while never slipping off into the unrigorous, as it is all too often with "practical" books. — Nikolas Akerblom, graduate student in theoretical physics, Hannover, Germany "Amazing book! This is one of the best written math books I have seen. The authors write in a clear and engaging style which makes the reader understand the beauty of math. After you read this text you can put this on your bookcase besides other classics such as Spivak's Calculus. Let's hope that the sequel will appear in the near future. '' — A reader from Toronto, Canada "A
beautiful book for undergrads and grads alike. Although I am a graduate
student, I found Hubbard's 'undergraduate' text to be extremely
helpful. Hubbard combines an intuitive heuristic approach appropriate
for undergraduates with a thoroughly rigorous set of proofs appropriate
for graduate students. I found his discussion of differential forms particularly helpful. He provides an excellent intuitive motivation for the definitions, and then he follows this with a mathematically sound treatment of the topic. This is a much nicer approach than one will find in texts such as Rudin's Principals of Mathematical Analysis. I highly recommend Hubbard's book to anyone wishing to learn differential forms.'' — Review posted at amazon.com Feb. 21, 2002. "I am currently using the book as part of a small team at Microsoft informally investigating Quantum Computing.... we are recapitulating modern physics in the language of the Exterior Calculus, and we find your book to be the best allaround introduction to the subject (the others are either too abstract to furnish intuition or too applied to furnish rigor). For instance, your book is the first and only one I have seen that motivates a basis kform in nspace procedurally: concatenate k ncolumnvectors in a matrix, strike out all rows but the k mentioned in the indices of the kform, and calculate the determinant. All other presentations I have seen start either with axiomitization of the wedge product, or with study of the generic permutation symbols, or with oddball "eggcrate" metaphors, or some other equally sidelong approach that is both very timeconsuming and ultimately leaves one unequipped to do anything with kforms other than wonder why. This one single aspect of your book makes it worthwhile and, at least for me, provides an absolute keystone for deeper understanding. ...if these topics were taught to physicists out of your book rather than through the standard physics curriculum, much time and aggravation could be saved. I see no reason for students to study vector/tensor calculus and linear algebra separately, then NEVER formally study differential forms away from applications, THEN FINALLY have to try to unlearn them ALL and relearn them together when they can all be learnt at once right the first time through your approach.'' — Brian Beckman, Microsoft. "This book is unique in several ways: it covers an immense amount of material, much of which is never presented in books aimed at this level. The underlying idea of the authors is to present constructive proofs, which has the great benefit of providing the reader with the ability to actually compute quantities appearing in the theorems. As an example, the Inverse Function Theorem is proved using Newton's method, which relies on Kantorovich's Theorem, and thus actually gives an explicit size of the domain on which the inverse exists. The book also contains a very nice section on Lebesgue integrals, a topic which is usually reserved for graduate level courses. The construction is to my knowledge completely new, and does not rely on sigmaalgebras, but utilizes only elementary mathematics. Another nice feature is that the book considers abstract spaces at an early stage. Thus the reader is presented with the idea of computing derivatives of functions acting on e.g. matrixspaces, as opposed to the usual Euclidean spaces. The concluding treatment on differential forms brings a lot of the introduced ideas together and completes the picture by a thorough treatment on integration over manifolds. This book can be studied at several levels. For a first year honours course, one may skip the trickiest proofs, which appear in the appendix. More advanced readers may choose to study constructions and details of selected theorems and proofs. Anyone who buys this book will have a solid companion for many years ahead.'' — Review posted at amazon.com on Feb. 14, 2002. "The authors condense in less than 600 pages an incredible amount of classical material. Most of it is presented in a very original way, many times very different from classical presentations (e.g., Stokes's formula, Lebesgue dominated convergence for Riemann integrals....) The book compiles material scattered over the mathematical literature and is an excellent reference book. It is the best book that I know for freshmen with a taste for mathematics. The presentation, pictures, anecdotes and historical comments make it extremely enjoyable, not only for the student but also for the professor. A musthave that will become a classic.'' — Professor Ricardo PerezMarco, UCLA Department of Mathematics. "Never before had I even considered contacting the author just to tell him/her how much I loved the book. Your unified approach is a very original, unique, and effective teaching method. There's much more for the student to think about (hence more scratch work to be done on the side), but it's well worth the effort! Your clear and concise presentation of topics coupled with penetrating insights offered at key moments make reading (and learning) the subject matter a most enjoyable experience!'' — Vincent Chang. "When I compared this text to other texts that friends of mine have used in similar classes at various other universities, I found one of two things to be true. Either my friends owned a copy of Hubbard's text or they owned a rather dull, uninspired, possibly outdated text. In the latter case, I was then able to understand why I often hear complaints that math is a 'cold', 'esoteric', 'dry' or 'soulless' subject.'' — A Cornell student. "The book is a wonderful combination of explanations using simple terms and a presentation of the multivariable and linear algebra concepts in a more rigorous mathematical sense.'' — A reader from Ithaca, NY. "As the title suggests, this "unified approach" is is a very unique and effective teaching method of presenting three subject areas (that are normally taught as two or three individual classes) in a single text! The authors do a magnificent job of showing and stressing the interconnectedness among vector calculus, linear algebra, and differential forms; so for those readers expecting a bland and disjoint presentation, you'll be in for a very pleasant surprise! ...The authors' clear and concise presentation of topics, coupled with penetrating insights offered at key moments (in the form of sidenotes, footnotes, remarks, inserts, margin notes, etc.) make reading (and learning) the subject matter a most enjoyable experience! This reader wishes that this textbook was available when he was taking vector calculus and linear algebra! For those who have this book, be on the lookout for the sequel." — A reader from Sunnyvale, CA. For information on
the fourth edition, please go to To order the fourth edition: Orders: US 
