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Plane hyperbolic geometry

In this chapter we will see that the unit disc D has a natural geometry,
known as plane hyperbolic geometry or plane Lobachevski geometry. It
is the local model for the hyperbolic geometry of Riemann surfaces, the
subject of Chapter 3, so this chapter is a prerequisite for the next.

Plane hyperbolic geometry is essentially an elementary subject, similar
to Euclidean geometry, and even more similar to spherical trigonometry.
Sections 2.1 and 2.4 could be taught in an undergraduate geometry course,
and often are. Section 2.2 discusses curvature; Section 2.3 shows that ca-
noeing in the hyperbolic plane would be very different from canoeing in the
Euclidean plane: in the hyperbolic plane, if you deviate only slightly from
the straight line, your canoe will not go around in circles.

2.1 The hyperbolic metric

The disc has a natural metric, invariant under all automorphisms: the
hyperbolic metric. In our usage, the hyperbolic metric will be understood
to be an infinitesimal metric, i.e., a way to measure tangent vectors, given
by a norm on each tangent space. Such an infinitesimal metric induces a
metric in the ordinary sense, via lengths of curves; we discuss this below.

In general, an infinitesimal metric on an open subset U ⊂ R2 is written
as a positive definite (real) quadratic form

E(x, y) dx2 + 2F (x, y) dx dy +G(x, y) dy2. 2.1.1

(The letters E,F,G for the coefficients are traditional and go back to
Gauss.) This infinitesimal metric assigns the length√

E(x, y)a2 + 2F (x, y)ab+G(x, y)b2 2.1.2

to the vector (a, b) ∈ T(x,y)U .
The hyperbolic metric and most of the other metrics relevant to us will

be conformal : they are metrics on Riemann surfaces, and if U is a Riemann
surface, then the entries of the metric in an analytic coordinate z = x+ iy

satisfy E = G and F = 0. Setting |dz|2 := dx2 + dy2, we can thus write
conformal metrics as

E(x, y)(dx2 + dy2) =
(
ϕ(z)

)2|dz|2, 2.1.3

with ϕ a positive real-valued function on U ⊂ C. We denote by ϕ(z)|ξ| the
length assigned to the tangent vector ξ ∈ TzU by this metric. (We will often
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call ϕ(z)|dz| the metric; in this way of thinking, the metric returns a length,
not length squared.) Conformal metrics interact well with multiplication
by complex numbers: if α is a complex number, then(

ϕ(z)|dz|
)
(αξ) = ϕ(z)

(
|dz|(αξ)

)
= |α|

(
ϕ(z)|dz|

)
(ξ) = |α|ϕ(z) |ξ|. 2.1.4

Exercise 2.1.1 Show that there is no metric on C or on P1 that is invariant
under all analytic automorphisms. ♦

inProposition and Definition 2.1.2 (Hyperbolic metric on the disc)
All analytic automorphisms of D are isometries for the (infinitesimal) hy-

perbolic metric

ρD :=
2|dz|

1− |z|2 . 2.1.5

All invariant metrics are multiples of the hyperbolic metric.

The hyperbolic metric is also called the Poincaré metric.
Figure 2.1.1, right, illustrates the hyperbolic metric on the unit disc.

Figure 2.1.1 Left: Stickmen of different sizes. Right: Measured with the

hyperbolic metric, these stickmen in D are all the same size and are spaced an

equal distance apart. The men are walking on the part of the real axis in the unit

disc, which is a geodesic; their hats are on a curve at constant distance from this

geodesic. This curve is a circle of hyperbolic geometry, i.e., a curve of constant

geodesic curvature (see Definition 2.3.3), but it is not itself a geodesic. The points

where the curve of feet and the curve of hats appear to meet are points at infinity.
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Proof We can construct an invariant metric ϕ(z)|dz| as follows. First,
choose ϕ(0) > 0. If z ∈ D, then the automorphism

w 7→ w − z
1− z̄w 2.1.6

maps z to 0, and its derivative maps the tangent vector ξ ∈ TzD to the
tangent vector ξ/(1− |z|2) ∈ T0D, so

ϕ(z)|dz|(ξ)︸ ︷︷ ︸
metric applied to ξ

= ϕ(0)
|ξ|

1− |z|2 .︸ ︷︷ ︸
length of the image of ξ under the automorphism

2.1.7

This is well defined, because any other automorphism mapping z to 0 must
differ from the one given by 2.1.6 by a rotation around 0, which will preserve
|ξ|. This shows that equation 2.1.7 does define an invariant metric, that
all invariant metrics are of this form, and that all are conformal. Remark
2.1.10 discusses why ϕ(0) is chosen to be 2 in equation 2.1.5, and not 1, as
you might expect. ¤

It is often convenient to have other models of the hyperbolic plane. By
the uniformization theorem, any simply connected noncompact Riemann
surface other than C is a model of the hyperbolic plane, and if you can write
down a conformal mapping explicitly, you can find the hyperbolic metric
for that model explicitly. The following models are especially useful:

1. the band B := { z ∈ C | | Im z| < π/2 } with the hyperbolic metric
|dz|/ cos Im z, shown in Figures 2.1.2 and 2.1.3.

2. the upper halfplane H with the hyperbolic metric |dz|/ Im z, shown
in Figure 2.1.4. (When we need to consider the lower halfplane, we
will denote it H∗.) Note that the real axis is not part of H.

0

−iπ/2

iπ/2

real axis

Figure 2.1.2 Stickmen walking on the real axis in the band model B of the

hyperbolic plane. In this model, on the real axis, Euclidean and hyperbolic lengths

coincide. We saw in Figure 2.1.1 that this is not true of the disc model.

Note that there is a natural unit of length in the hyperbolic plane: the
one that assigns curvature −1 to the plane; see Remark 2.1.10. So we do not
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Figure 2.1.3 Here we see many geodesics in the band model B: some that do

not intersect R (with dogs walking on some of them), one that is asymptotic to

it, and some that intersect it, with stickmen walking on some of them. The dogs

(on the scale of the stickmen) are roughly the size of Great Danes. The stickmen

are all the same size, and are regularly spaced about .5 apart.

real axis
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Figure 2.1.4. Stickmen in

the upper halfplane model H

of the hyperbolic plane. Every

vertical line is a geodesic. The

stickmen on one vertical line

are all the same size and are

equally spaced (two men next

to each other are ln 2 apart).

Although the vertical lines

look parallel, the lines are

asymptotic and the distance

between two adjacent lines is

0. Stickmen at height 2i are

twice as far apart as those at

height 4i.

need to specify the unit of length. This is analogous to deciding that a
sphere has radius 1 because that is the radius that gives curvature 1 to the
sphere.

Exercise 2.1.3 Show that H and B are isometric to D. ♦
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Exercise 2.1.4 1. Show that the complex analytic automorphisms of H

are the maps z 7→ az + b

cz + d
with a, b, c, d ∈ R and det

[
a b
c d

]
> 0.

2. Show that this identifies Aut H with PSL2 R := SL2 R/± I.
3. Show that PSL2 R is precisely the set of orientation-preserving isome-

tries of H for the hyperbolic metric. ♦

Exercise 2.1.5 1. Find the hyperbolic metric of C− [0,∞).
2. Find the hyperbolic metric of D− [0, 1). ♦
There is a nice restatement of Schwarz’s lemma in terms of the hyperbolic

metric:

inProposition 2.1.6 (Schwarz-Pick theorem)

1. All analytic maps f : D → D are weakly contracting for the hy-

perbolic metric.

2. If such an f is an isometry at a single point, it is an automorphism.

Proof 1. Choose z ∈ D and automorphisms α, β : D → D such that
α(0) = z and β(f(z)) = 0. Then β ◦ f ◦ α maps D to D and takes 0 to
0. The standard form of Schwarz’s lemma now says that this mapping is
weakly contracting, i.e., |(β ◦ f ◦ α)′(0)| ≤ 1. Part 1 follows from the fact
that α and β are isometries.

2. If f is an isometry at z, then the derivative of β ◦ f ◦ α at 0 has
absolute value 1, so β ◦f ◦α is a rotation (again, by the standard Schwarz’s
lemma), hence an automorphism. Hence so is f . ¤

The models D, H, and B are summarized in Table 2.1.6.

Geodesics

With an infinitesimal metric, we can measure lengths of rectifiable curves.
This allows us to define the distance between two points to be the infimum
of the lengths of the curves joining them. For example, the hyperbolic
distance is the distance using the hyperbolic metric. Curves that minimize
length are the geodesics of the geometry. It is easy to say exactly what they
are for the hyperbolic plane, especially in the model H; see Figure 2.1.5
and Proposition 2.1.7.

inProposition 2.1.7 (Geodesics in H) Given any two points a, b in the

upper halfplane H, there exists a unique semicircle perpendicular to the

real axis and passing by a and b. (If Re (a) = Re (b), the semicircle de-

generates to the vertical line through a and b.) The arc of this semicircle

that joins a to b is the unique geodesic arc joining these points.


