Future Books
Advanced Topics in Calculus: Differential Equations
John Hubbard and Barbara Burke Hubbard
The tentative publication date for this book is 2023.
Incomplete table of contents (draft)
Chapter 1 Differential equations as models
1.0 Introduction
1.1 Initial value differential equations
1.2 Differential equations and the exponential
1.3 Applications to ecology: sharks and sardines
1.4 An application to astronomy
1.5 Boundary-value problems: soap bubbles
1.6 Review exercises for Chapter 1
Chapter 2 Qualitative methods
2.0 Introduction
2.1 First-order equations: fences and funnels
2.2 Fences for equations of higher dimension
2.3 Review exercises for Chapter 2
Chapter 3 Analytic methods: first-order equations
3.0 Introduction
3.1 Separation of variables
3.2 Exact equations and differential forms
3.3 The Frobenius theorem
3.4 Review exercises for Chapter 3
Chapter 4 Existence and uniqueness of solutions
4.1 The fundamental inequality
4.2 Uniqueness of solutions
4.3 Euler's method
4.4 Existence of solutions
4.5 Applications to qualitative methods
4.6 Flows of differential equations
4.7 A surprising case of Euler's method
4.8 Review exercises for Chapter 4
Chapter 5 Numerical methods
5.1 A survey of numerical methods
5.2 Some experimental results
5.3 Runge-Kutta methods
5.4 The discrete fundamental inequality
5.5 Round-off errors
5.6 More elaborate (higher-order) methods
5.7 Analyzing the speed of convergence
5.8 Finite accuracy
5.9 Implicit methods
5.10 Review exercises for Chapter 5
Chapter 6 Analytic methods: linear equations with constant coefficients
6.0 Introduction
6.1 What makes linear equations linear?
6.2 Higher-order linear equations with constant coefficients
6.3 Beyond the cookbook: behavior of solutions
6.4 Eigenvectors, eigenvalues, and decoupling
6.5 Partial differential equations and eigenvalues
6.6 Exponentials of non-diagonalizable matrices
6.7 Nonhomogeneous
equations: solving with undetermined coefficients
6.8 Nonhomogeneous
equations: solving with variation of parameters
6.9 Review exercises for Chapter 6
Chapter 7 Second-order
linear equations with nonconstant coefficients
7.0 Introduction
7.1 Existence and uniquness of solutions
7.2 The two Prüfer transforms
7.3 Sturm-Liouville theory
7.4 Regular singular points
7.5 Bessel functions
7.6 Review exercises for Chapter 7
Chapter 8 Zeros of vector fields
8.1 Some planar examples
8.2 Zeros whose linearizations are sinks
8.3 Saddles in R^2 and R^n
8.4 Periodic solutions and their Poincaré maps}
Chapter 9 Hopf bifurcations
Chapter 10 The homoclinic tangle