
Appendix D1

The Nullstellensatz and
Selberg’s lemma

This book is about hyperbolic manifolds and Kleinian groups: discrete
subgroups of Aut H3. Kleinian groups may have torsion, and the quotient
of H3 by such a group is an orbifold, not a manifold.

Many people (I am among them) find it much easier to think about
manifolds, even if the extra di�culties involving orbifolds are sometimes
more psychological than real. Invoking Selberg’s lemma often allows us to
replace orbifolds by manifolds at no cost.

Selberg’s lemma is not really a theorem in hyperbolic geometry; it is a
result about finitely generated subgroups of PSL2 C (and of many other
algebraic groups), and never mentions discreteness. But it does involve
commutative algebra, more specifically several incarnations of the Hilbert
Nullstellensatz . Most of this appendix concerns these results.

The Hilbert Nullstellensatz is part of a standard course in commutative
algebra, though deriving the variants we will require from the standard
treatment might take as long as developing the subject from scratch, as we
do here.

Section D1.1 is a refresher on commutative algebra, Section D1.2 intro-
duces Jacobson rings, Section D1.3 proves several variants of the Nullstel-
lensatz, and Section D1.4 proves Selberg’s lemma.

While writing this appendix, we benefited from conversations with Ken
Brown and from lecture notes he dug up from a course taught by Steven
Kleiman at MIT around 1970. The presentation is also quite close to the
one in Eisenbud’s book [24].

D1.1 Commutative algebra: a crash course

For those readers who, like the author, find that their commutative algebra
is a bit rusty and could use a spot of oil, we recall in this first section some
useful generalities.

All rings will be commutative with unit, and all ring homomorphisms
will map the unit element to the unit element. A ring where ab = 0 implies
that either a = 0 or b = 0 or both is called an integral domain. We will
call an integral domain simply a domain, to avoid confusion with other
meanings of “integral”.
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Let A be a ring. An ideal I ⇢ A is a subset that is a group under
addition, and that is closed under multiplication by elements of A (not just
by elements of I). You could also say that it is a subset of A which, with
the operations of A, is an A-module. With our definition rings have units,
so an ideal I ⇢ A is usually not a ring: if it contains the unit of A it is A.
If A is a ring and I ⇢ A is an ideal, then the quotient A/I (the set of cosets
of I, right or left) is naturally a ring.

An ideal is
• proper if it is not all of A, or, equivalently, if it does not contain 1;
• prime if it is proper and ab 2 I implies a 2 I or b 2 I or both;
• maximal if it is maximal among proper ideals ordered by inclusion.
If f : A! B is a ring homomorphism, then an element b 2 B is integral

over A if it satisfies the equation

bn + f(an�1)bn�1 + · · · + f(a0) = 0 D1.1.1

for some choice of elements a0, . . . , an�1 of A. (The key requirement here
is that the polynomial be monic.) If all elements of B are integral over A,
then B is integral over A.

A domain A has a field of fractions KA, constructed just as the rationals
are constructed from the integers. If b 2 A with b 6= 0, then A[1/b] is the
smallest sub-ring of KA containing A and 1/b. For instance, Z[1/2] is the
ring of rational numbers with only powers of 2 in the denominator.

Of course if b is invertible in A, then 1/b is in A, so A[1/b] = A.

Some useful generalities for those who need a spot of oil

1. A proper ideal I ⇢ A is prime if and only if A/I is a domain. An
ideal I ⇢ A is maximal if and only if A/I is a field. In particular, a
maximal ideal is prime.

2. The union of any increasing family of proper ideals is a proper ideal;
this and Zorn’s lemma show that every proper ideal is contained in
a maximal ideal.

3. A ring A is a domain if and only if the ideal {0} ⇢ A is prime.
4. If f : A ! B is a ring homomorphism and P ⇢ B is a prime ideal,

then f�1(P ) is a prime ideal of A.
5. If f : A! B is a surjective ring homomorphism and M is a maximal

ideal of B, then f�1(M) is a maximal ideal of A. If M is a maximal
ideal of A containing ker f , then f(M) is maximal in B.

6. If an inclusion A ⇢ B of domains makes B integral over A, then A
is a field if and only if B is a field.

7. Let A ⇢ B be an inclusion of rings, and let x 2 B be integral over
A. Then all elements of A[x] are integral over A.

The last two statements require proof.


