
Appendix D10

Minimal but not ergodic

Here we see that it is possible for the horizontal foliation of a quadratic
di↵erential to be minimal (all leaves dense) but not ergodic. It is di�cult
to imagine such a measured foliation: the leaves can be colored red and
blue, even though red and blue are everywhere, and what you see is purple.

The example was originally due to Veech in the language of interval
exchange maps. The treatment below is adapted from Masur and Tabach-
nikov [56].

Let T := C/(Z + iZ) be the square torus with the quadratic di↵erential
induced by dz2, hence of area 1. Choose two distinct points a and b in T ;
for convenience we will not put a or b on the “axes” R/Z and iR/iZ; see
Figure D10.1, right. Let ea0, eb0 2 C be the lifts with real and imaginary
parts in (0, 1); see Figure D10.1, left. Use the image 0 2 T of 0 2 C as a
base point of T � {a, b}. Set eI0 := [ea0,eb0] and let I0 be its image in T .

More generally, for n 2 Z+ iZ, set ebn := eb0 +n. Every line segment that
joins a and b in T is the image In of eIn := [ea0,ebn]; see Figure D10.1, right.

By the standard description of covering spaces, the double covers of T
ramified at a and b are classified by the elements of
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⌘
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Remark Note that each double cover comes with a base point b0 (one of
the inverse images of 0 in T ): the double covers are defined up to unique
isomorphism, not just up to isomorphism. 4

The space H1(T � {a, b}; Z/2) is isomorphic to (Z/2)3; we will use the
basis dual to the basis

↵ = R/Z, � = iR/iZ, � a loop around a D10.2

of H1(T � {a, b}; Z/2). Thus there are eight such covers (corresponding to
the eight elements of (Z/2)3), seven if we require the cover to be connected,
and four if we insist that the ramification at a and b be nontrivial; in the
latter case the double cover is a surface of genus 2 by the Riemann-Hurwitz
formula. These surfaces all come with a quadratic di↵erential q that is the
lift of dz2 on T ; it is a holomorphic quadratic di↵erential with two double
zeros, in fact q = !2, where ! is the lift of dz. For the measure |q| each of
these surfaces has area 2.
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Figure D10.1 Left: The complex plane C with the grid Z+iZ marked, as well

as the points ea0 and eb0, both in (0, 1)⇥(0, 1). The point ebn corresponds to eb0 +n;

here n = 4 + 2i. The red line segments are the inverse images of the red curve

I0 ⇢ T at right; they are also the translates of eI0 by elements of Z+iZ. The

yellow lines are translates of eIn. Right: The quotient T = C/(Z+iZ); we see

I0 (the image of [ea0,eb0]); we also see (yellow) the more complicated I4+2i (the

image of [ea0,eb4+2i]). The curves ↵ and � generate the homology of T , and � is a

loop around a. The Riemann surface X on which we will exhibit a non-ergodic

minimal measured foliation is the double cover of the torus corresponding to the

cohomology class that evaluates to 0 on ↵ and �, and to 1 on �. We have marked

the point where I0 (red) intersects In (yellow); see Exercise D10.1.

The Riemann surface X on which we will exhibit a non-ergodic minimal
measured foliation is the double cover corresponding to the cohomology
class that evaluates to 0 on ↵ and �, and to 1 on �. The non-ergodic
minimal measured foliation will be the horizontal foliation of the quadratic
di↵erential

�
ei✓!

�2 for an appropriate ✓. It will immediately follow that
this minimal measured foliation is not ergodic.

I like to visualize X as shown in Figure D10.2, where two copies of
the torus are slit along the red curve I0. (If we had slit along the yellow
curve instead, we would get the same surface X, because it is a double
cover ramified at a and b, and there only four such double covers; it is
straightforward to check which it is. But I find it quite hard to visualize
that these two surfaces are the same.)

What happens if we split T1 and T2 along In? The resulting surfaces
will be among the four connected double covers with nontrivial ramification
at a and b. Which surface we get depends on the parity of the real and
imaginary parts of n. The resulting surface is X precisely if the real and
imaginary parts of n are even, since the cohomology class defining the cover
evaluates to 0 on � if the real part of n is even and to 1 if it is odd, and
similarly for the imaginary part and ↵. We will call In (and eIn) admissible
if both real and imaginary parts of n are even. (This is the case in Figure
D10.1, where n = 4 + 2i.)


