Theorem 2.10.7 is illustrated by Figure 2.10.6.

Note that we could replace the length of the derivatives by their norm (Definition 2.9.6) to get a slightly stronger theorem.

On first reading, skip the last sentence about the ball with radius  $R_1$ . It is a minor point.

The ball V gives a lower bound for the domain of g; the actual domain may be bigger. But there are cases where the largest R satisfying the conditions of Theorem 2.10.7 is optimal. We invite you to check that if  $f(x) = (x-1)^2$ , with  $x_0 = 0$ , so that  $y_0 = 1$ , then the largest R satisfying equation 2.10.11 is R = 1. Thus the interval V = (0,2) is the largest interval centered at 1 on which an inverse can be defined. Indeed, since the function g is  $g(y) = 1 - \sqrt{y}$ , any value of y smaller than 0 is not in the domain of g.

Theorem 2.10.7 (The inverse function theorem). Let  $W \subset \mathbb{R}^m$  be an open neighborhood of  $\mathbf{x}_0$ , and let  $\mathbf{f} : W \to \mathbb{R}^m$  be a continuously differentiable function. Set  $\mathbf{y}_0 = \mathbf{f}(\mathbf{x}_0)$ .

If the derivative  $[\mathbf{Df}(\mathbf{x}_0)]$  is invertible, then  $\mathbf{f}$  is invertible in some neighborhood of  $\mathbf{y}_0$ , and the inverse is differentiable.

To quantify this statement, we will specify the radius R of a ball V centered at  $\mathbf{y}_0$ , in which the inverse function is defined. First simplify notation by setting  $L = [\mathbf{Df}(\mathbf{x}_0)]$ . Now find R > 0 satisfying the following conditions:

- 1. The ball  $W_0$  of radius  $2R|L^{-1}|$  and centered at  $\mathbf{x}_0$  is contained in W.
- 2. In  $W_0$ , the derivative of  $\mathbf{f}$  satisfies the Lipschitz condition

$$|[\mathbf{Df}(\mathbf{u})] - [\mathbf{Df}(\mathbf{v})]| \le \frac{1}{2R|L^{-1}|^2} |\mathbf{u} - \mathbf{v}|.$$
 2.10.11

Set  $V = B_R(\mathbf{y}_0)$ . Then

1. There exists a unique continuously differentiable mapping  $\mathbf{g}: V \to W_0$  such that

$$\mathbf{g}(\mathbf{y}_0) = \mathbf{x}_0$$
 and  $\mathbf{f}(\mathbf{g}(\mathbf{y})) = \mathbf{y}$  for all  $\mathbf{y} \in V$ . 2.10.12

Since the derivative of the identity is the identity, by the chain rule, the derivative of  $\mathbf{g}$  is  $[\mathbf{Dg}(\mathbf{y})] = [\mathbf{Df}(\mathbf{g}(\mathbf{y}))]^{-1}$ .

2. The image of **g** contains the ball of radius  $R_1$  around  $\mathbf{x}_0$ , where

$$R_1 = R \left| L^{-1} \right|^2 \left( \sqrt{|L|^2 + \frac{2}{|L^{-1}|^2}} - |L| \right).$$
 2.10.13



FIGURE 2.10.6. The function  $\mathbf{f}: W \to \mathbb{R}^m$  maps every point in  $\mathbf{g}(V)$  to a point in V; in particular, it sends  $\mathbf{x}_0$  to  $\mathbf{f}(\mathbf{x}_0) = \mathbf{y}_0$ . Its inverse function  $\mathbf{g}: V \to W_0$  undoes that mapping. The image  $\mathbf{g}(V)$  of  $\mathbf{g}$  may be smaller than its codomain  $W_0$ . The ball  $B_{R_1}(\mathbf{x}_0)$  is guaranteed to be inside  $\mathbf{g}(V)$ ; it quantifies "locally invertible".