Errata and Clarifications: Chapter 5

updated April 14, 2004

Page 530 Definition 5.1.3: How do we know that $\operatorname{det}\left(T^{\top} T\right) \geq 0$, so that $\sqrt{\operatorname{det}\left(T^{\top} T\right)}$ makes sense? Here is one justification:

Note that

$$
\left(T^{\top} T\right) \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}=\left(T^{\top} T \overrightarrow{\mathbf{v}}\right)^{\top} \overrightarrow{\mathbf{v}}=T \overrightarrow{\mathbf{v}} \cdot T \overrightarrow{\mathbf{v}}>0 .
$$

Denote by A the $k \times k$ matrix $T^{\top} T$ and let I be the $k \times k$ identity matrix, set $0 \leq t \leq 1$, and consider the matrix $(t A+(1-t) I$, which we can think of as A (when $t=1$) being transformed to I (when $t=0$). Now, for $\overrightarrow{\mathbf{v}} \neq \mathbf{0}$, we have

$$
(t A+(1-t) I) \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}=t \underbrace{A \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}}_{>0}+\underbrace{(1-t)}_{\geq 0} \underbrace{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}}_{>0}>0 .
$$

This implies that, for $0 \leq t \leq 1, \operatorname{ker}(t A+(1-t) I=\mathbf{0}$ and thus that $\operatorname{det}(t A+(1-t) I$ is never 0 when $0 \leq t \leq 1$. Since when $t=0, \operatorname{det}(t A+(1-t) I=1$, and when $t=1, \operatorname{det}(t A+(1-t) I=\operatorname{det} A$, it follows that $\operatorname{det} A>0$.

Page 531 The hint for Exercise 5.1.3 is not used in the solution given in the solution manual; in addition, it neglects to define T :

$$
T=\left[\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}\right] .
$$

Here is a solution using the hint:
Set $T=\left[\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}\right]$. Since the vectors $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}$ are linearly dependent, $\operatorname{rank} T<k$. Further, $\operatorname{Img} T^{\top} T \subset \operatorname{Img} T^{\top}$, so

$$
\operatorname{rank} T^{\top} T \leq \operatorname{rank} T^{\top} \underbrace{=}_{\text {Prop. 2.5.12 }} \operatorname{rank} T<k .
$$

Since $T^{\top} T$ is a $k \times k$ matrix with rank $<k$, it is not invertible, hence its determinant is 0 , so

$$
\operatorname{vol}_{k} P\left(\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}\right)=\sqrt{\operatorname{det} T^{\top} T}=0 .
$$

Page 534 Equation 5.2.4: a_{1} should be a_{i} in two places, and the "for $a_{1}, a_{2}, a_{3}, \ldots$ should be omitted:

$$
U=\bigcup_{i=1}^{\infty}\left(a_{i}-\frac{1}{2^{N+i}}, a_{i}+\frac{1}{2^{N+i}}\right) .
$$

The next sentence should say "This is an open subset of $\mathbb{R} \ldots$," not "This is an open subset of $[0,1] \ldots$."

In Equation 5.2.5, the sum should start at $n=1$ not $=1$. On the righthand sides of Equations 5.2 .5 and 5.2.6, the denominator should be 2^{N-1}, not 2^{N-2}.

Page 537 Middle margin note: z-axis, not x-axis, in "you get the equation of the surface obtained by rotating the original curve around the x-axis".

Page 539 In Figure 5.2.4, the top line in the rectangle at right should be darker.

Page 539 In Theorem 5.2.10 we used the word diffeomorphism without defining it. A diffeomorphism is a differentiable mapping with differentiable inverse.

Page 541 Three lines after Equation 5.3.2: "sum them," not "summ them."
Page 541 Definition 5.3.1: This definition is not wrong, but it is unfortunate that we restricted ourselves to this special case instead of defining the integral of a function over a manifold. In subsequent editions, we will replace this definition by something like

Definition 5.3.1 (Integral with respect to volume, over a manifold). Let $M \subset \mathbb{R}^{n}$ be a smooth k-dimensional manifold, U a pavable subset of \mathbb{R}^{k}, and $\gamma: U \rightarrow M$ a parametrization according to Definition 5.2.3. Let $f: M \rightarrow \mathbb{R}$ be a function. Then f is integrable over M with respect to volume if the last integral below exists, and then the integral is

$$
\begin{align*}
\int_{M} f(\mathbf{x})\left|d^{k} \mathbf{x}\right|=\int_{\gamma(U)} f(\mathbf{x})\left|d^{k} \mathbf{x}\right| & =\int_{U} f(\gamma(\mathbf{u}))\left(\left|d^{k} \mathbf{x}\right|\left(P_{\gamma(\mathbf{u})}\left(\overrightarrow{D_{1} \gamma}(\mathbf{u}), \ldots, \overrightarrow{D_{k} \gamma}(\mathbf{u})\right)\right)\right)\left|d^{k} \mathbf{u}\right| \\
& =\int_{U} f(\gamma(\mathbf{u})) \sqrt{\operatorname{det}\left([\mathbf{D} \gamma(\mathbf{u})]^{\top}[\mathbf{D} \gamma(\mathbf{u})]\right)}\left|d^{k} \mathbf{u}\right|
\end{align*}
$$

Such an integral is sometimes referred to as the integral of a density, as opposed to the integral of a differential form.

If $f=1$, the integral above gives the volume of M.
A corresponding change would then need to be made to Proposition 5.3.2 and its proof.
In several examples and exercises we actually use the above definition of "integral of a function with respect to volume."

Page 545 Line 2, plural, not singular: "the intersection of the surfaces of equations".
Equation 5.3.26: the second line should end with $d \theta$.
Equation 5.3.27: This equation should not have a $d \theta$ at the end. It should have a period.

Page 549 In three places, $D_{2} f$ should be $D_{3} f$: the last line of Equation 5.3 .45 should be

$$
1+\left(D_{1} f\right)^{2}+\left(D_{2} f\right)^{2}+\left(D_{3} f\right)^{2}
$$

In the second line of Equation 5.3.45, three closing parentheses aren't opened. The line should be

$$
=\operatorname{det}\left[\begin{array}{ccc}
1+\left(D_{1} f\right)^{2} & \left(D_{1} f\right)\left(D_{2} f\right) & \left(D_{1} f\right)\left(D_{3} f\right) \\
\left(D_{1} f\right)\left(D_{2} f\right) & 1+\left(D_{2} f\right)^{2} & \left(D_{2} f\right)\left(D_{3} f\right) \\
\left(D_{1} f\right)\left(D_{3} f\right) & \left(D_{2} f\right)\left(D_{3} f\right) & 1+\left(D_{3} f\right)^{2}
\end{array}\right]
$$

Equation 5.3.46 should be

$$
\int_{U} \sqrt{1+\left(D_{1} f\right)^{2}+\left(D_{2} f\right)^{2}+\left(D_{3} f\right)^{2}}\left|d^{3} \mathbf{x}\right|
$$

and the left-hand side of the first line of Equation 5.3 .48 should be

$$
\int_{B_{\mathbf{0}}(R)} \sqrt{1+\left(D_{1} f\right)^{2}+\left(D_{2} f\right)^{2}+\left(D_{3} f\right)^{2}}\left|d^{3} \mathbf{x}\right|
$$

Page 550 The caption to Table 5.3.3 would perhaps be clearer as follows:

Computing the volume of the n-dimensional unit ball in \mathbb{R}^{n}, for $n=1, \ldots, 5$, and for the n dimensional unit sphere in \mathbb{R}^{n+1}, for $n=0,1 \ldots, 5$. (The 0 -dimensional sphere in \mathbb{R} consists of the two points -1 and 1.)

Page 551 Exercise 5.3.2: "Use the result of Exercise 5.3.1 (a)", not "use Equation 5.3.1 ...".
Page 552 first margin note: the earth's circumference, not diameter!
Exercise 5.3.12: The total curvature of a curve C is $\int_{C} \kappa\left|d^{1} \mathbf{x}\right|$.
Page 556 Exercise 5.6: Some subscripts got forgotten, and one superscript is wrong. It should be:
(a) Show that $w_{n+1}^{\prime}(r)=v_{n}(r)$.
(b) Show that $v_{n}(r)=r^{n} v_{n}(1)$.
(c) Derive Equation 5.3.49, using $w_{n+1}(1)=\int_{0}^{1} w_{n+1}^{\prime}(r) d r$.

