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for their contributions to this list. Listings are divided into errors, notes
and amplifications, and minor typos.

Errors

Page 70 Figure 1.4.3: z is in the wrong place. The figure should be as
follows.

α

0

�y

�x �z

Page 283 Exercise 2.36: 2nd line, “satisfies supk �=j |λk − λj | ≥ m > 0”
should be “satisfies infk �=j |λk − λj | ≥ m > 0.”

Page 311 Proof of proposition 3.2.7: In the 1st line, “in some neighbor-
hood V of u ∈ Rn” should be “in some neighborhood V of γ(u) ∈ Rn.” In
the 4th line, “open neighborhood of γ−1(u)” should be “open neighborhood
of u.”

Page 319 Sentence before example 3.3.11: “be continuous” should be
“be differentiable”. The partial derivatives in that example are continuous,
but not differentiable.

Page 369 Exercise 3.7.8: x + y ≤ 1, not x + y = 1.

Page 344 Exercise 3.5.18: We should have said that A is a real matrix.
(Also, there should be an arrow on x�.)
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Page 388 Exercise 3.8.4: ‘Hyperboloid” should be “ellipsoid”.

Page 402 The proof of proposition 4.1.16 assumes that if f is integrable,
then f+ and f− are also. This is only proved on page 425 (corollary 4.3.4).
If and when the book is reprinted, we will move this corollary here, with a
different (and easier) proof. Corollary 4.3.5 will be moved also, becoming
part two of the new corollary. The text begining “Definition 4.1.15 allows
us to reduce . . . ” and ending with the line before proposition 4.1.16 will
be replaced by:

Part 1 of corollary 4.1.15 lets us reduce a problem about an arbitrary
function to a problem about nonnegative functions. We will use it to prove
proposition 4.1.16. If f : Rn → R is any function, we define f+ and f− by

f+(x) =
{

f(x) if f(x) ≥ 0

0 if f(x) < 0
, f−(x) =

{ −f(x) if f(x) ≤ 0

0 if f(x) > 0.
4.1.39

Clearly both f+ and f− are nonnegative functions, and f = f+ − f−.

inCorollary 4.1.15. 1. A bounded function f with bounded support is

integrable if and only if both f+ and f− are integrable.

2. If f and g are integrable, so are sup(f, g) and inf(f, g).

Proof. 1. If f is integrable, then by part 4 of proposition 4.1.14, |f | is
integrable, and so are f+ = 1

2 (|f | + f) and f− = 1
2 (|f | − f), by parts 1

and 2. Now assume that f+ and f− are integrable. Then f = f+ − f− is
integrable, again by parts 1 and 2.

2. By part 1 and by proposition 4.1.14, the functions (f − g)+ and
(f − g)− are integrable, so by proposition 4.1.14,

inf(f, g) =
1
2

(
f + g − (f − g)+ − (f − g)−

)
,

sup(f, g) =
1
2

(
f + g + (f − g)+ + (f − g)−

) 4.3.5

are integrable. �

Page 405 Proposition 4.1.23: “A set X ⊂ Rn should be “a bounded set
X ⊂ Rn”.

Page 405 Proposition 4.1.24: The t on the right side of equation 4.1.64
should be |t|: voln(tA) = |t|n voln(A).

Page 406 In keeping with the correction in proposition 4.1.24, many of
the t in the proof of that proposition should be |t|:
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since voln(tC) = |t|n voln(C) for every cube, this gives

|t|n
∑

C∈DN ,C⊂A

voln(C) =
∫ ∑

C∈DN ,C⊂A

1|t|C ≤ L(1|t|A)

≤ U(1|t|A) ≤
∫ ∑

C∈DN ,C∩A �=� 0
1|t|C

= |t|n
∑

C∈DN ,C∩A �=� 0
voln(C). 4.1.67

The outer terms have a common limit as N → ∞, so L(1|t|A) = U(1|t|A),
and

voln(tA) =
∫

1|t|A(x)|dnx| = |t|n voln(A). � 4.1.68

Page 418 Definition 4.2.16: “Let S1 and S2 be the sample spaces for
two experiments. If f : S1 → R and g : S2 → R . . . ” should be “Let S be
the sample space for an experiment. If “f : S → R and g : S → R . . . ”.

Page 424 Last 2 lines: “a cube intersecting the support” should be “a
(great big) cube containing the support”.

Page 425 Equation 4.3.4, second line: the second overbrace with ≥ ε0
is inaccurate. It is the sum of the voln C that is ≥ ε0.

Page 427 The comment following theorem 4.3.8, saying that the theorem
says that integration is translation invariant, is misleading. It only says it
for continuous functions. We have added a corollary in section 4.4:

inCorollary 4.4.11 (Integration is translation invariant). If a func-

tion f : Rn → R is integrable, then for any �v ∈ Rn, the function

x �→ f(x − �v) is integrable.

It follows from theorem 4.4.6.

Page 427 Line immediately after equation 4.3.7: It is not true that the
points xN and yN are necessarily both in the support of f , but at least one
must be, since otherwise we would have |f(xN ) − f(yN )| = |0 − 0|. Since
both are in the same cube CN , we know that |xN − yN ≤ 1/2N . However,
we propose adding a new theorem and proving theorem 4.3.8 from it; see
the section “notes and amplifications”.

Page 437 Line 4: The statement “ . . . then at least one of x and x + a

is in the interior of a dyadic cube” is incorrect. For instance, x =
[

0
−
√

2

]

is not in the interior of any dyadic cube, nor is x + a =
[√

2
0

]
. To remedy

this, we have added two statements on page 432 and changed the proof
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pages 436–437; see the notes for those pages, under the heading “Notes and
amplifications”.

Page 480 Second margin note: “then T−1T (�v) ∈ T−1T (C)” should be
“then T−1(�v) ∈ T−1T (C)”.

Page 517 Exercise 4.6 part b: This is not a probability density (be-
cause the integral diverges) so the problem doesn’t make sense. We suggest
replacing this exercise by the following:

What are the expectation, variance, and standard deviation, if they exist,
of the random variable f(x) = x, for the following probability densities.

a. μ(x) = e−x1[0,∞] b. μ(x) =
1

(x + 1)2
1[0,∞) c. μ(x) =

2
(x + 1)3

1[0,∞)

Page 519 Exercise 4.28 is identical to part b of exercise 4.6 and does
not make sense. We suggest replacing it by:

a. Show that
1
x2

1[1,∞](x) is a probability density.

b. Show that the random variable f(x) = x does not have an expectation
(i.e., that the expectation is infinite).

c. Show that
2
x3

1[1,∞](x) is a probability density.

d. Show that the random variable f(x) = x does have an expectation,
and compute it. Show that it does not have a variance (again, the variance
is infinite).

Page 557 Exercise 5.10: We should have said that the vectors x1, . . . ,xk

are linearly independent. In part a, d(x, M) should be d(x0, M).

Page 608 Definition 6.6.1, 3rd line: x ∈ M , not x ∈ X.

Notes and amplifications

Page 11 Second paragraph of subsection “Is arcsin a function?”: We are
told that some readers were confused by

“The daughter of,” as a function from people to women . . . is not a
function.

By the first “function”, we meant a rule going from people to girls and
women. By the second “function”, we meant a function in the mathematical
sense.

Page 16 Exercise 0.4.2: The word relation has a technical meaning: a
relation R between X and Y is an arbitrary subset R ⊂ X × Y . Thus a
function f :X → Y is a special kind of relation, one that associates to any
element of X exactly one element of Y (definition 0.4.1). More precisely
(definition 0.4.3), it is a subset Γf ⊂ X × Y such that for every x ∈ X,
there exists a unique y ∈ Y with (x, y) ∈ Γf .
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The rule “daughter of” with X = Y the set of women is not a function
since it is not everywhere defined: there exist women (x) with no corre-
sponding daughter (y). But it is a relation.

A relation is 1–1 if for all y the set {y | (x, y) ∈ R} has at most one
element. It is onto if for all y the set {x | (x, y) ∈ R} has at least one
element. The relation “daughter of” is 1–1 and onto: every woman has one
and only one biological mother.

There are other relations of interest: equivalence relations, order rela-
tions, and partial orders, for instance. They are not discussed in this book.

Page 16 Exercise 0.4.6: We should have written “to real nonnegative
numbers” rather than “to real positive numbers”. We meant positive (≥ 0)
as opposed to strictly positive (> 0), but we intended in this book to stick
to the terminology “nonnegative” for ≥ 0 and “nonpositive” for ≤ 0.

Page 16 Exercises 0.4.3–0.4.6 : Transformation is a synonym for func-
tion but it is most often used in the expression linear transformation, de-
fined in section 1.3. We should have written function or mapping here.

Page 60 Equation 1.3.10: The line at angle θ and the line at angle θ+π

are the same line, so the reflection matrices should also be the same. Note
that 2(θ + π) = 2θ + 2π is the same angle as 2θ. That is why 2θ, not θ,
appears in the matrix.

Page 60 2nd and 3rd lines from the bottom: To take the projection of
a point onto a line, we draw a line from the point perpendicular to the
line, and see where on the line it arrives. We have dropped the adjective
“orthogonal” (right-angle) in “orthogonal projection”; if we needed to speak
of a non-orthogonal projection, we would call it an “oblique projection”.

Page 70 Corollary 1.4.4: By “line spanned by �x” we mean the line
formed of all multiples of �x.

Page 72 Corollary 1.4.8: “Two vectors are orthogonal” means that they
form a right angle.

Page 75 Proposition 1.4.14 and the caption to figure 1.4.9: When we
speak of the parallelogram “spanned” by �a and �b, we mean the parallelo-
gram with edges �a and �b, as shown by the figure.

Page 75 David Meyer proposes a different proof of part 1 of proposition
1.4.14, in which one first proves that det(RA) = det(A), where R is rotation
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by angle θ and A =
[

a1 b1

a2 b2

]
:

det(RA)︷ ︸︸ ︷
det

([
cos θ − sin θ
sin θ cos θ

] [
a1 b1

a2 b2

])
= det

[
a1 cos θ − a2 sin θ b1 cos θ − b2 sin θ
a1 sin θ + a2 cos θ b1 sin θ + b2 cos θ

]

= a1b2(cos2 θ + sin2 θ) − b1a2(sin2 θ + cos2 θ)

= a1b2 − b1a2 = det
[

a1 b1

a2 b2

]
︸ ︷︷ ︸

det(A)

(Since the determinant of the rotation matrix is 1, this is a special case of
the formula detAB = detA detB, which we prove for n × n matrices in
theorem 4.8.4.) Rotate the parallelogram by angle t so that the edge �a lies

on the x-axis, becoming the vector
[
|�a|
0

]
, where |�a| is the length of �a, and

the original edge �b becomes whatever the rotation makes it, which we will

denote by
[

b′1
b′2

]
:

RA =
[
|�a| b′1
0 b′2

]
.

Then the area of the parallelogram is

|�a|︸︷︷︸
base

|b′2|︸︷︷︸
height

= |det(RA)| = |det(A)|.

Moreover, since
[

b′1
b′2

]
=

[
|�b| cos θ
|�b| sin θ

]
, where θ is the angle between �a and �b

this gives the formula for the area of a parallelogram:

Area = |�a| |�b| | sin θ|.

Page 105 Exercise 1.5.24 deserves a star.

Page 286 Mid-page, the statement “Rn × Rm = Rn+m” is not really
correct, and we have decided to change definition 3.1.1 of a graph to read

inDefinition 3.1.1 (Graph). The graph Γ(f) of a function f : Rn → Rm

is the set of points in
(

x
y

)
∈ Rn+m such that f(x) = y.

It is convenient to denote a point in the graph of a function f : Rk → Rn−k

as
(

x
f(x)

)
, with x ∈ Rk and f(x) ∈ Rn−k. But when this notation is used

to describe a manifold, it is misleading, since there is no reason to suppose
that the k “active” variables come first, or even that the k active variables at
one point of the manifold are the same as the k active variables at another
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point. How then might we describe a point in the graph of a function
f : Rk → Rn−k? Here is a accurate if heavy-handed approach, using the
“concrete to abstract” linear transformation Φ of definition 2.6.14. Set

a =

⎛
⎝ a1

...
ak

⎞
⎠ and b =

⎛
⎝ b1

...
bn−k

⎞
⎠

with f(a) = b. Suppose that the variables of the domain d of f are i1, . . . , ik
and that those of the codomain c are j1, . . . , jn−k, and define

Φd(a) = a1�ei1 + · · · + ak�eik

Φc(f(a)) = b1�ej1 + · · · + bn−k�ejn−k
,

with all the �e in Rn. Then a point z in the manifold M (i.e., in the graph
of f) can be written

z = Φd(a) + Φc(f(a)).

Page 307 Definition 3.2.1: We had thought of f as a element of a
k-dimensional subspace of Rn and of [Df ] as an element of an (n−k)-
dimensional subspace of Rn, so that it makes sense to add them, but on
further reflection, we decided that what we are really adding is Φd(a) and
Φc(f(a)); see the note for page 286. Thus we propose replacing definition
3.2.1 by

inDefinition 3.2.1 (Tangent space to a manifold). Let M ⊂ Rn be
a k-dimensional manifold. If z ∈ M is the point

z = Φd(a) + Φc(f(a)),

with a ∈ Rk and f(a) ∈ Rn−k, then the tangent space to M at z, denoted
TzM , is the graph of the linear transformation Df(a).

The tangent space is thus the set of points

Φd(ȧ) + Φc([Df(a)]ȧ)

where ȧ denotes an increment to a.

Page 348 The last paragraph is shaky, since V is just a subspace of Rn

and proposition 3.5.15 is stated and proved for Q defined on all of Rn. The
following substitute avoids this problem:

If l > 0, there exists �h with Qf,a(�h) < 0. Then

f(a + t�h) − f(a) = Qf,a(t�h) + r(t�h) = t2Qf,a(�h) + r(t�h).

Thus

f(a + t�h) − f(a)
t2

= Qf,a(�h) +
r(t�h)

t2
,
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and since limt→0
r(t�h)

t2 = 0, we have

f(a + t�h) < f(a)

for |t| > 0 sufficiently small.

Page 349 For the same reason as for the proof of theorem 3.6.9, the

proof of theorem 3.6.11 is shaky. Here is a fix:

Write

f(a + �h) = f(a) + Qf,a(�h) + r(�h) with lim
�h→�0

r(�h)

|�h|2
= 0,

as in equations 3.6.11 and 3.6.12.

By definition 3.6.10, there exist vectors �h and �k such that Qf,a(�h) > 0

and Qf,a(�k) < 0. Then

f(a + t�h) − f(a)
t2

=
t2Qf,a(�h) + r(t�h)

t2
= Qf,a(�h) +

r(t�h)
t2

is strictly positive for te0 sufficiently small, and

f(a + t�k) − f(a)
t2

=
t2Qf,a(�k) + r(t�h)

t2
= Qf,a(�k) +

r(t�k)
t2

is negative for t 
= 0 sufficiently small.

Page 377 First paragraph: These are not actually the best possible

coordinates; we could use the spectral theorem to get rid of the quadratic

terms in XY ; see equation 5.4.4. We will see in chapter 5 that this can

simplify computations.

Page 379 We have changed some signs in proposition 3.8.10, to make

them compatible with thinking of the unit normal as pointing upwards.

The signs in the textbook are not wrong, but correspond to thinking of the

chosen normal as being the downward pointing normal.
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inProposition 3.8.10 (Putting a surface into “best” coordinates).
Let U ⊂ R2 be open, f : U → R a C2 function, and S the graph of f .

Let the Taylor polynomial of f at the origin be

z = f
(

x
y

)
= a1x + a2y +

1
2

(
a2,0x

2 + 2a1,1xy + a0,2y
2
)

+ · · · . 3.8.34

Set c =
√

a2
1 + a2

2. If c 
= 0, i.e., if S is not in “best” coordinates, then S is

in best coordinates with respect to the coordinates X, Y, Z corresponding

to the orthonormal basis

⎡
⎢⎢⎢⎣

+a2
c

−a1
c

0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

a1

c
√

1 + c2

a2

c
√

1 + c2

c√
1 + c2

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

−a1√
1 + c2

−a2√
1 + c2

+1√
1 + c2

⎤
⎥⎥⎥⎥⎥⎦ . 3.8.35

With respect to these coordinates, S is the graph of Z as a function F

of X and Y :

F

(
X
Y

)
=

1
2

(
A2,0X

2 + 2A1,1XY + A0,2Y
2
)

+ · · · , 3.8.36

which starts with quadratic terms, where

A2,0 =
1

c2
√

1 + c2

(
a2,0a

2
2 − 2a1,1a1a2 + a0,2a

2
1

)

A1,1 =
1

c2(1 + c2)
(
a1a2(a2,0 − a0,2) + a1,1(a2

2 − a2
1)

)

A0,2 =
1

c2(1 + c2)3/2

(
a2,0a

2
1 + 2a1,1a1a2 + a0,2a

2
2

)
.

3.8.37

Page 380 Since we changed signs in proposition 3.8.10, to make them
compatible with thinking of the unit normal as pointing upwards, we also
change the sign of the mean (scalar curvature) in part 2 of proposition
3.8.11:

2. The mean curvature of S at the origin is

H(0) =
1

2(1 + c2)3/2

(
a2,0(1 + a2

2) − 2a1a2a1,1 + a0,2(1 + a2
1)

)
. 3.8.39

Page 388 Exercise 3.8.1: One might begin this exercise by computing

the curvature of a circle of radius r. The equation
x2

a2
+

y2

b2
= 1 is the

equation of an ellipse. Exercise 3.8.2: The equation
x2

a2
− y2

b2
= 1 is the

equation of a hyperbola. Exercise 3.8.4: One might begin this exercise by
computing the Gaussian curvature of a sphere of radius r.
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Page 396 The following definition of “support” is perhaps more stan-
dard:

inDefinition 4.1.2 (Support of a function: Supp(f)). The support
Supp(f) of a function f : Rn → R is the closure of the set

{x ∈ Rn | f(x) 
= 0 } . 4.1.9

With this definition, the comment page 427 that “compact support” and
“bounded support” mean the same thing is correct.

Page 399 In definition 4.1.12, we should have specified that f is bounded
with bounded support.

Page 401 The converse of part 4 of proposition 4.1.14 is false. Consider
the function

f(x)=

⎧⎪⎨
⎪⎩

1 if x ∈ [0, 1] ∩ Q

−1 if x ∈ [0, 1] ∩ (R − Q)

0 otherwise

The function |f | = 1[0,1] is integrable, but f is not.

Page 427 We propose adding a new theorem, to be called 4.3.8b (to
keep subsequent numbering unchanged), and proving theorem 4.3.8 from
it:

inTheorem 4.3.8. Any continuous function on Rn with bounded support

is integrable.

Theorem 4.3.8 follows almost immediately from theorem 4.3.8 b.

inTheorem 4.3.8 b. Let X ⊂ Rn be compact. A continuous function

f : X → R is uniformly continuous.

Proof. Uniform continuity says:

(∀ε > 0)(∃δ > 0)
(
|x − y| < δ =⇒ |f(x) − f(y)| < ε

)
.

By contradiction, suppose f is not uniformly continuous. Then there
exist ε > 0 and sequences i �→ xi, i �→ yi such that

lim
i→∞

|xi − yi| = 0, but for all i we have |f(xi) − f(yi)| ≥ ε.

Since X is compact, we can extract a subsequence j �→ xij that converges
to some point a ∈ X. Since limi→∞ |xi − yi| = 0, the sequence j �→ yij

also converges to a.
By hypothesis, f is continuous at a, so there exists δ > 0 such that

|x − a| < δ =⇒ |f(x) − f(a)| <
ε

3
. 4.3.7
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Further, there exists J such that

j ≥ J =⇒ |xij
− a| < δ and |xij

− a| < δ.

Thus for j ≥ J we have

|f(xij ) − f(yij )| ≤ |f(xij ) − f(a)| + |f(a) − f(yij )| ≤
ε

3
+

ε

3
< ε.

This is a contradiction. �

Proof of theorem 4.3.8. Now let us prove theorem 4.3.8 from theorem
4.3.8 b. Let f be continuous with bounded support. Since the support is
compact, f is uniformly continuous. Choose ε, and use theorem 4.3.8 b to
find δ > 0 such that

|x − y| < δ =⇒ |f(x) − f(y)| < ε. 4.3.8

For all N such that
√

n/2N < δ, any two points of a cube of DN (Rn) are
at most distance δ apart. Thus if C ∈ DN (Rn), then

|f(x) − f(y)| < ε. 4.3.9

This proves the theorem: f satisfies a much stronger requirement than
theorem 4.3.1 requires. Theorem 4.3.1 only requires that the oscillation be
greater than ε on a set of cubes of total volume < ε, wheras in this case for
sufficiently large N there are no cubes of DN (Rn) with oscillation ≥ ε. �

Page 399 In definition 4.1.12, we should have specified that f is bounded
with bounded support.

Page 426 The title for proposition 4.3.6 should specify “graph of inte-
grable function”.

Page 427 Corollary 4.3.9 should be replaced by the following two corol-
laries:

Corollary 4.3.9 is not just a spe-
cial case of proposition 4.3.6 be-
cause although we could define f
on all of Rn by having it be 0 out-
side X, we are not requiring that
such an extension of f be inte-
grable, and it may not be.

inCorollary 4.3.9. Let X ⊂ Rn be compact and let f : X → R be

continuous. Then the graph Γf ⊂ Rn+1 has volume 0.

Proof. Since X is compact, it is bounded, and there is a number A such
that the number of cubes C ∈ DN (Rn) such that X ∩ C 
= /© is at most
A2nN . Choose ε > 0, and use theorem 4.3.8 b to find δ > 0 such that if
x1,x2 ∈ X,

|x1 − x2| < δ =⇒ |f(x1) − f(x2| < ε.

Further choose N such that
√

n/2N < δ, so that for any C ∈ DN (Rn) and
any x1,x2 ∈ C, we have |x1 − x2| < δ.

For any C ∈ DN (Rn) such that C ∩ X 
= /©, at most 2N ε + 1 cubes of
DN (Rn+1) intersect Γf , hence Γf is covered by at most A2nN (2N ε + 1)
cubes with total volume

1
2(n+1)N

A2nN (2N ε + 1),
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which can be made arbitrarily small by taking ε sufficiently small. �

inCorollary 4.3.10. Let U ⊂ Rn be open and let f : U → Rn be a

continuous function. Then any compact part Y of the graph of f has

(n + 1)-dimensional volume 0.

Proof. The projection X of Y into Rn is compact, and the restriction g

of f to X satisfies the hypotheses of corollary 4.3.9. �

Page 429 The paragraph “polynomials are integrable” is flawed. The
statement that a polynomial is integrable over a set of finite volume does
not depend on corollary 4.4.10. Corollary 4.4.11 should therefore be moved
to section 4.3, where it can be proved using theorem 4.3.10:

Corollary 4.3.14: The polyno-
mial p is of course not integrable,
since it does not have bounded
support.

inCorollary 4.3.14. Any polynomial function p can be integrated over

any set A of finite volume; that is, p · 1A is integrable.

Proof. The function p · 1A meets the conditions of theorem 4.3.11: it is
bounded with bounded support and is continuous except on the boundary
of A, which has volume 0. �

Page 431 Theorem 4.4.4: “Union” should be “countable union”, as
indicated by the notation X1 ∪ X2 ∪ . . . . Theorem 4.4.4 is of course not
true for arbitrary unions: any set is the union of its points, which all
have measure 0. Thus measure theory depends on distinguishing between
countable and uncountable infinities, and could only come after Cantor’s
work. Indeed Riemann intergration, which doesn’t depend on Cantor’s
work, came before, but Lebesgue itegration, which does, comes after.

Page 432 We have added the following statements after the proof of
theorem 4.4.4:

inCorollary 4.4.4 b. Let BR(0) be the ball of radius R centered at 0. If

for all R the subset X ⊂ Rn satisfies voln(X ∩ BR(0)) = 0, then X has

measure 0.

Proof. Since X = ∪∞
m=1 (X ∩ Bm(0)), it is a countable union of sets of

volume 0, hence measure 0.

inProposition 4.4.4 c. Any subspace of Rn of dimension k < n has

measure 0. Any translate of a subspace of Rn of dimension k < n has

measure 0.

Proof. The first statement follows from proposition 4.3.7 and corollary
4.4.4 b; the second from proposition 4.1.22. �
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Pages 436–437 We suggest replacing the end of the proof, starting 2
lines after equation 4.4.7, with the following:

Choose δ > 0 and apply equation 4.4.7, denoting by CN1 the finite collec-
tion of cubes C ∈ DN1(R

n) with oscC f ≥ ε1 = δ/4. These cubes have total
volume less than δ/4. Now let CN2 be the finite collection of cubes with
oscC f ≥ ε2 = δ/8; these cubes have total volume less than δ/8. Continue
with ε3 = δ/16, . . . .

Finally, consider the infinite sequence of open boxes B1, B2, . . . obtained
by listing first the interiors of the cubes in CN1 , then those of the cubes in
CN2 , etc.

This almost solves our problem: the sums of the volumes of the boxes
in our sequence is at most δ/4 + δ/8 + · · · = δ/2. The problem is that
discontinuities on the boundary of dyadic cubes may go undetected by
oscillation on dyadic cubes: the value of the function over one cube could be
0, and the value over an adjacent cube could be 1; in each case the oscillation
over the cube would be 0, but the function would be discontinuous at points
on the border between the two cubes.

This is easily dealt with: the union B of all the boundaries of all dyadic
cubes has measure 0. To see this, denote by δDN (Rn) the union of the
boundaries of the dyadic cubes of DN . Then

1. For each N , the boundary δDN (Rn) is a countable union of trans-
lates of subspaces of dimension n − 1, hence has measure 0 by the-
orem 4.4.4 and proposition 4.4.4 c.

2. The set B = ∪∞
N=1δDN (Rn) has measure 0, since it is a countable

union of sets of measure 0. � theorem 4.4.6.

Page 438 Exercise 4.4.3: These statements are proved in the text. This
exercise could be replaced by:

Prove that any compact subset of Rn of measure 0 has volume 0. Hint :
Use the Heine-Borel theorem (theorem A3.3 in appendix A.3).

Page 443 2nd line of example 4.5.7: “clearly” could be replaced by “by
proposition 4.1.24”.

Pgae 462 At the end of definition 4.7.3, “the diameter of P , denoted
diam(P ), is the supremum of the distance between points x,y ∈ P ,” not
“the maximum distance”. Sentence following the definition: “For any
bounded function f with bounded support, we can define an upper sum
UPN

(f) and a lower sum LPN
(f) with respect to any paving . . . ”

Page 659 In equation 6.11.34, the partial derivatives in the gradient are
computed only with respect to x.

Minor typos, spelling, etc.
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Page 18 Last line of first paragraph: [x]3 should be [x]−3:
“for the number in equation 0.5.1, [x]−3 = 0.350; it is not 0.349.”

Page 75 Caption of figure 1.4.9: To be consistent with our notation,(
a1
a2

)
should be

[
a1

a2

]
and

(
b1
b2

)
should be

[
b1

b2

]

Page 142 In the second line of equation 1.8.11, two open parentheses
are not closed. It would be simplest to delete them, changing (g(a + �h) +
f(a)(g(a+ �h) to g(a+ �h) + f(a)g(a+ �h). Similarly, in the third line of the
first margin note, change f(a)(g(a + �h) to f(a)g(a + �h).

Page 222 Exercise 2.6.9: In the last line of part (a),

{v}1, . . . ,vn

should be v1, . . . ,vn.

Page 363 Caption to figure 3.7.10: The transpose of the matrix [DF(p)]
is (m + n) × m, not (m + n) × n.

Page 370 Exercise 3.7.12 duplicates theorem 3.7.15.

Page 431 First line: “arbitrarily small”, not “arbitrary small”.

Page 434 Proof of theorem 4.4.6: in the last line of the first paragraph,
osc(f) should be oscC(f).

Page 442 Example 4.5.4, 1st line: “preceding”, not “proceeding”.

Page 478 Exercise 4.8.16: To be consistent in our notation, χA(A) = 0
should be χA(A) = [0].

Page 478 Exercise 4.8.18, part b: We should have said that A is invert-
ible.

Page 519 Exercise 4.30: In the 2d line, {x | f(x) 
= g)x) } should be
{x | f(x) 
= g(x) }

Page 557 Exercise 5.10 is lacking two commas: �x0, �x1, . . . �xk should be
�x0, �x1, . . . , �xk, and �x1, . . . �xk should be �x1, . . . , �xk.

Page 633 Caption of figure 6.8.3: “Clockwise”, not “counterclockwise”.

Page 694 First equation in equation A4.3: �0 on the right, not v0.

Page 727 2 lines before equation A14.6: “F
(

x
y

)
= 0” should be

“F
(

x
y

)
= 0”.
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Page 780 We have rewritten exercise A23.2 to avoid any reference to
the boundary of a manifold:

A23.2 Prove theorem 5.2.8. Outline: Let M be a manifold. For every
x ∈ M , let r(x) be the supremum of the radii ρ of balls centered at x such
that M ∩ Bρ(x) is the graph of a C ′ function expessing some variables as
functions of others.

a. Show that r :M → R is continuous.

b. Show that for any ε, the set

Mε = {x ∈ M | r(x) ≥ ε and |x| ≤ 2ε }
is compact, and that M =

⋃
ε>0 Mε.

c. Show that there exists a sequence of balls Bρi(xi) such that

M ⊂
⋃
i

Bρi
(xi) with ρi =

1
2
r(xi).

d. Show that if you can parametrize

Mi
def= M

N⋃
i=l

Bρi
(xi),

you can parametrize Mi+1.

e. Finish.
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