
Chapter 3

Discretization of partial
differential equations

The mathematical formulation of most problems involving rates of change with respect
to two or more independent variables, usually representing time, length, or angle, leads
either to a partial differential equation (PDE) or to a system of such equations. Special
cases of the two-dimensional second-order partial differential equation
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where A, B, C, D, E, F , and G may be functions of independent variables x and y and
a dependent variable φ, occur more frequently than any others, because they are often
the mathematical form of one of the conservation principles of physics.

Equation (3.1), frequently written in the equivalent form

Aφxx + Bφxy + Cφyy + Dφx + Eφy + Fφ + G = 0,

is said to be elliptic when B2− 4AC < 0, parabolic when B2− 4AC = 0, and hyperbolic
when B2 − 4AC > 0.

A comprehensive treatment of partial differential equations can be found in the books
of Ames [3], Birkhoff-Lynch [10], and Smith [51]. In this book we restrict our atten-
tion to elliptic partial differential equations, arising usually from steady-state diffusion,
diffusion-convection, and some fluid flow problems.

The best-known elliptic equations are the Poisson equation and the Laplace equation.
The Poisson equation
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often written as ∇2φ + G ≡ $φ + G = 0, represents problems of steady-state heat or
mass transfer involving diffusion and convection. The Laplace equation is written
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is called the Laplace operator or Laplacian.
The domain of integration of a two-dimensional elliptic equation is always an area

Ω bounded by a closed curve ∂Ω. The boundary conditions usually specify either the
value of the function or the value of its normal derivative at each point of ∂Ω, or a
mixture of both. There are three common types:

Dirichlet condition φ(x, y) = c(x, y),

Neumann condition
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Cauchy condition
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where the vector #n usually refers to a unit vector that is normal to ∂Ω and directed
outwards. Note that the Neumann condition is a special case of the Cauchy condition
with α = γ = 0.

A limited number of elliptic partial differential equations can be solved analytically.
The typical way to solve such equations is to discretize them, i.e., to approximate them
by equations that involve a finite number of unknowns. In the matrix problems that
arise from these discretizations, the matrices are generally large and sparse: they have
very few nonzero entries. Moreover, those entries are usually located in a regular pattern
on a few diagonals.

There are different ways to discretize partial differential equations. The best are
finite-difference or finite-element methods, which are well suited to computer program
implementation.

In the simplest method of finite differences, derivatives at a point (x, y) are approx-
imated by difference quotients over a small interval, i.e., ∂φ/∂x is replaced by δφ/δx,
where δx is small and y is constant, and ∂φ/∂y is replaced by δφ/δy, where δy is
small and x is constant. Finite-difference solutions are usually satisfactory for practical
applications.

The finite-element method replaces the original function by a function that has some
degree of smoothness over the global domain, but is a piecewise polynomial on simple
nodes such as small triangles or rectangles. Finite-element methods are not considered
in this book; interested readers are referred to the books of Ames [3] and Reddy [44].

3.1 Finite-difference approximations

The main goal of this chapter is to derive finite-difference approximations for some ellip-
tic differential equations and to study the properties of the associated matrix equations.
Three different methods of deriving finite difference approximations are used in practice;
they are based on the variational formulation, integration, and Taylor series.

The variational method is based on the self-adjoint property of a given differential
equation; therefore, it is not applicable to general differential equations. The integration
technique gives particularly simple discretizations in problems with internal interfaces
and nonuniform meshes; it is applicable in the general case. The Taylor series method
seems to be most popular because it allows us to deduce the order of approximation
of the discrete methods and is applicable to differential equations in general; it will be
discussed below.


