Chapter 8

Advances in solving linear
control systems

This chapter is devoted to iterative solutions of Sylvester and continuous-time algebraic
Riccati equations using the SOR-like method, recently introduced by the author. These
equations are important in many design problems appearing in control and filter theory.
Section 8.1 analyzes the solution of Sylvester equations [92, 93]. Section 8.2 discusses
the numerical solution of continuous-time algebraic Riccati equations [95].

8.1 Sylvester equations

The matrix equation

AX-XB=C, (8.1)
with A € R™*™ B € R and C,X € R™*" is known as the Sylvester equation. It
has many applications in control theory. When B = —AT, it reduces to the well-known

Lyapunov equation.
Equation (8.1) is a linear equation for X, and can be written as a large linear system
of the standard form for linear equations:

Gx=c (8.2)

for an mn x mn matrix
G=I,A-B'®1,, (8.3)

where ® denotes the Kronecker product, and x and c are vectors in R™" whose com-
ponents are the entries of successive rows of the matrices X and C respectively.

Equation (8.1) has a unique solution if and only if the matrices A and B have no
common eigenvalues [20].

In the literature, several methods have been proposed for solving (8.1) [7, 24, 30, 63].
A survey of properties and applications of the Sylvester equation in control theory is
presented in [15]. Recently, block Lanczos and Arnoldi methods have been developed
for solving (8.1) [25]. Simoncini [50] extended the Hu-Reichel algorithm [30] to the block
form, and El Guennouni et al. [25] proposed new Krylov subspace algorithms based on
block Arnoldi and Lanczos methods.
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In subsection 8.1.1 we present the simple SOR-like method for solving (8.1). Sub-
section 8.1.2 discusses results of numerical experiments using the SOR-like method to
solve Sylvester equations obtained by means of two different separation models of ellip-
tic partial differential equations, for examples derived from Problem E, originally used
in [30]. One of these models, called the separation model A, is used in [30]; the second,
the separation model B, is new.

As is demonstrated in these numerical experiments, the SOR-like method seems to
be a very efficient tool, strongly competitive with Krylov subspace techniques, especially
with separation model B.

8.1.1 The SOR-like method

Assume that the matrix A can be decomposed as
A=K-L-TU, (8.4)

where K is nonsingular diagonal, L is the strictly lower triangular part of A, and U is
its strictly upper triangular part. Then equation (8.1) can be rewritten as follows:

KX =LX+UX+XB+C (8.5)

or, equivalently, as
X:K*FX+UX+XB+@. (8.6)

The iteration process is depicted in figures 8.1.1 and 8.1.2 for the example with
m = 7 and n = 3, where the nonzero entries of the matrices K, L, U, B, and C are
denoted by “«”; the entries of Xt~ computed in the iteration ¢t — 1 are denoted by
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o”; the entries of X(¥) computed in the iteration ¢t are denoted by “e”; and the entry

“o”

of X® currently computed is denoted by “&”.

-1
® O O * ® O O
® O O * * ® O O
® O O * * ok ® OO
e 00 | = * k ok ok ® 0O
® 0 O * k ok ok ok o oo
o 0 o * * ok ok ok ok o0 o0 O
o 0 o * * ok ok ok k% o o0 o
N——— N—_——
X K-1 L X
* ok ok ok k% ® 0O ® 0O k ok ok
k ok ok ok ok e 0O e 0O k ok ok
* ok ok ok ® O O ® O O kook ok * ko ok
+ * ok ok e 00|+ [e® 0O kookok ) | ok ok ok R
* ok o 0 O o 0 O * ok ok * ok ok
* o o0 o O 0 O |\ , * ok ok
o 0o o o0 o * ok ok
B
N —— N —— N—_———
19) X X C

FIGURE 8.1.1

The entries of X(*) are computed by columns, where the entries of X(*) are used to
compute the product LX and the entries of X(*=1) are used to compute the product



