
Chapter 8

Advances in solving linear
control systems

This chapter is devoted to iterative solutions of Sylvester and continuous-time algebraic
Riccati equations using the SOR-like method, recently introduced by the author. These
equations are important in many design problems appearing in control and filter theory.
Section 8.1 analyzes the solution of Sylvester equations [92, 93]. Section 8.2 discusses
the numerical solution of continuous-time algebraic Riccati equations [95].

8.1 Sylvester equations

The matrix equation
AX−XB = C, (8.1)

with A ∈ Rm×m, B ∈ Rn×n and C,X ∈ Rm×n, is known as the Sylvester equation. It
has many applications in control theory. When B = −A", it reduces to the well-known
Lyapunov equation.

Equation (8.1) is a linear equation for X, and can be written as a large linear system
of the standard form for linear equations:

Gx = c (8.2)

for an mn×mn matrix
G = In ⊗A−B" ⊗ Im, (8.3)

where ⊗ denotes the Kronecker product, and x and c are vectors in Rmn whose com-
ponents are the entries of successive rows of the matrices X and C respectively.

Equation (8.1) has a unique solution if and only if the matrices A and B have no
common eigenvalues [20].

In the literature, several methods have been proposed for solving (8.1) [7, 24, 30, 63].
A survey of properties and applications of the Sylvester equation in control theory is
presented in [15]. Recently, block Lanczos and Arnoldi methods have been developed
for solving (8.1) [25]. Simoncini [50] extended the Hu-Reichel algorithm [30] to the block
form, and El Guennouni et al. [25] proposed new Krylov subspace algorithms based on
block Arnoldi and Lanczos methods.
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In subsection 8.1.1 we present the simple SOR-like method for solving (8.1). Sub-
section 8.1.2 discusses results of numerical experiments using the SOR-like method to
solve Sylvester equations obtained by means of two different separation models of ellip-
tic partial differential equations, for examples derived from Problem E, originally used
in [30]. One of these models, called the separation model A, is used in [30]; the second,
the separation model B , is new.

As is demonstrated in these numerical experiments, the SOR-like method seems to
be a very efficient tool, strongly competitive with Krylov subspace techniques, especially
with separation model B.

8.1.1 The SOR-like method

Assume that the matrix A can be decomposed as

A = K− L−U, (8.4)

where K is nonsingular diagonal, L is the strictly lower triangular part of A, and U is
its strictly upper triangular part. Then equation (8.1) can be rewritten as follows:

KX = LX + UX + XB + C (8.5)

or, equivalently, as
X = K−1

[
LX + UX + XB + C

]
. (8.6)

The iteration process is depicted in figures 8.1.1 and 8.1.2 for the example with
m = 7 and n = 3, where the nonzero entries of the matrices K, L, U, B, and C are
denoted by “∗”; the entries of X(t−1) computed in the iteration t − 1 are denoted by
“◦”; the entries of X(t) computed in the iteration t are denoted by “•”; and the entry
of X(t) currently computed is denoted by “!”.
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Figure 8.1.1

The entries of X(t) are computed by columns, where the entries of X(t) are used to
compute the product LX and the entries of X(t−1) are used to compute the product


