Contents

Preface vii
Chapter 0 Preliminaries
0.0 Introduction 1
0.1 Reading mathematics 1
0.2 Quantifiers and negation 4
0.3 Set theory 6
0.4 Functions 9
0.5 Real numbers 17
0.6 Infinite sets 22
0.7 Complex numbers 25
Chapter 1 Vectors, matrices, and derivatives
1.0 Introduction 32
1.1 Introducing the actors: Points and vectors 33
1.2 Introducing the actors: Matrices 42
1.3 Matrix multiplication as a linear transformation 56
1.4 The geometry of \mathbb{R}^{n} 67
1.5 Limits and continuity 83
1.6 Five big theorems 104
1.7 Derivatives in several variables as linear transformations 119
1.8 Rules for computing derivatives 137
1.9 The mean value theorem and criteria for differentiability 145
1.10 Review exercises for Chapter 1 152
Chapter 2 Solving EQUATIONS
2.0 Introduction 159
2.1 The main algorithm: Row reduction 160
2.2 Solving equations with row reduction 166
2.3 Matrix inverses and elementary matrices 175
2.4 Linear combinations, span, and linear independence 180
2.5 Kernels, images, and the dimension formula 192
2.6 Abstract vector spaces 207
2.7 Eigenvectors and eigenvalues 219
2.8 Newton's method 232
2.9 Superconvergence 252
2.10 The inverse and implicit function theorems 258
2.11 Review exercises for Chapter 2 277
Chapter 3 Manifolds, Taylor polynomials, QUADRATIC FORMS, AND CURVATURE
3.0 Introduction 283
3.1 Manifolds 284
3.2 Tangent spaces 305
3.3 Taylor polynomials in several variables 314
3.4 Rules for computing Taylor polynomials 325
3.5 Quadratic forms 332
3.6 Classifying critical points of functions 342
3.7 Constrained critical points and Lagrange multipliers 349
3.8 Probability and the singular value decomposition 367
3.9 Geometry of curves and surfaces 378
3.10 Review exercises for Chapter 3 396
Chapter 4 Integration
4.0 Introduction 401
4.1 Defining the integral 402
4.2 Probability and centers of gravity 417
4.3 What functions can be integrated? 424
4.4 Measure zero 430
4.5 Fubini's theorem and iterated integrals 438
4.6 Numerical methods of integration 449
4.7 Other pavings 459
4.8 Determinants 461
4.9 Volumes and determinants 479
4.10 The change of variables formula 486
4.11 Lebesgue integrals 498
4.12 Review exercises for Chapter 4 520
Chapter 5 Volumes of manifolds
5.0 Introduction 524
5.1 Parallelograms and their volumes 525
5.2 Parametrizations 528
5.3 Computing volumes of manifolds 538
5.4 Integration and curvature 550
5.5 Fractals and fractional dimension 560
5.6 Review exercises for Chapter 5 562
Chapter 6 Forms and vector calculus
6.0 Introduction 564
6.1 Forms on \mathbb{R}^{n} 565
6.2 Integrating form fields over parametrized domains 577
6.3 Orientation of manifolds 582
6.4 Integrating forms over oriented manifolds 589
6.5 Forms in the language of vector calculus 599
6.6 Boundary orientation 611
6.7 The exterior derivative 626
6.8 Grad, curl, div, and all that 633
6.9 The pullback 640
6.10 The generalized Stokes's theorem 645
6.11 The integral theorems of vector calculus 661
6.12 Electromagnetism 669
6.13 Potentials 688
6.14 Review exercises for Chapter 6 699
Appendix: Analysis
A. 0 Introduction 704
A. 1 Arithmetic of real numbers 704
A. 2 Cubic and quartic equations 708
A. 3 Two results in topology: Nested compact sets and Heine-Borel 713
A. 4 Proof of the chain rule 715
A. 5 Proof of Kantorovich's theorem 717
A. 6 Proof of Lemma 2.9.5 (superconvergence) 723
A. 7 Proof of differentiability of the inverse function 724
A. 8 Proof of the implicit function theorem 729
A. 9 Proving the equality of crossed partials 732
A. 10 Functions with many vanishing partial derivatives 733
A. 11 Proving rules for Taylor polynomials; big O and little o 735
A. 12 Taylor's theorem with remainder 740
A.13 Proving Theorem 3.5.3 (completing squares) 745
A. 14 Classifying constrained critical points 746
A. 15 Geometry of curves and surfaces: Proofs 750
A. 16 Stirling's formula and proof of the central limit theorem 756
A. 17 Proving Fubini's theorem 760
A. 18 Justifying the use of other pavings 762
A. 19 Change of variables formula: A rigorous proof 765
A. 20 Volume 0 and related results 772
A. 21 Lebesgue measure and proofs for Lebesgue integrals 776
A. 22 Computing the exterior derivative 794
A. 23 Proving Stokes's theorem 797
Bibliography 804
Photo credits 805
Index 807

