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Forms and vector calculus

Gradient a 1-form? How so? Hasn’t one always known the gradient
as a vector? Yes, indeed, but only because one was not familiar with
the more appropriate 1-form concept.—C. Misner, K. S. Thorne, J.
Wheeler, Gravitation

6.0 Introduction

What really makes calculus work is the fundamental theorem of calculus:
that differentiation, having to do with speeds, and integration, having to
do with areas, are somehow inverse operations.

In one-variable calculus, the
standard integrand f(x) dx takes a
piece [xi, xi+1] of the domain and
returns the number

f(xi)(xi+1 − xi) :

the area of a rectangle with height
f(xi) and width xi+1 − xi. Note
that dx returns xi+1 − xi, not
|xi+1 −xi|; this accounts for equa-
tion 6.0.1.

In Chapter 4 we studied the in-
tegrand |dnx|, which takes a (flat)
subset A ⊂ Rn and returns its
n-dimensional volume. In Chap-
ter 5 we showed how to integrate
|dkx| over a (curvy) k-dimensional
manifold in Rn to determine its
k-dimensional volume. Such inte-
grands require no mention of the
orientation of the piece.

Differential forms are a spe-
cial case of tensors. A tensor
on a manifold is “anything you
can build out of tangent vectors
and duals of tangent vectors”: a
vector field is a tensor, as is a
quadratic form on tangent vectors.

Although tensor calculus is a
powerful tool, especially in com-
putations, we find that speaking
of tensors tends to obscure the na-
ture of the objects under consider-
ation.

We want to generalize the fundamental theorem of calculus to higher
dimensions. Unfortunately, we cannot do so with the techniques of Chapters
4 and 5, where we integrated using |dnx|. The reason is that |dnx| always
returns a positive number; it does not concern itself with the orientation
of the subset over which it is integrating, unlike the dx of one-dimensional
calculus, which does:

∫ b

a
f(x) dx = −

∫ a

b
f(x) dx. 6.0.1

The cancellations due to opposite orientations make possible the fun-
damental theorem of calculus. To get a fundamental theorem of calculus
in higher dimensions, we need to define orientation in higher dimensions,
and we need an integrand that gives one number when integrating over a
domain with one orientation, and the opposite number when integrating
over a domain with the opposite orientation.

It follows that orientation in higher dimensions must be defined in such a
way that choosing an orientation is always a choice between one orientation
and its opposite. It is fairly clear that you can orient a curve by drawing
an arrow on it; orientation then means, what direction are you going along
the curve, with the arrow or against it? For a surface in R3, an orientation
is a specification of a direction in which to go through the surface, such
as crossing a sphere “from the inside to the outside” or “from the outside
to the inside”. These two notions of orientation, for a curve and for a
surface, are actually two instances of a single notion: we will provide a
single definition of orientation that covers these cases and all others as well
(including 0-manifolds, or points, which in other approaches to orientation
are sometimes left out).

Once we have determined how to orient our objects, we must choose
our integrands: the mathematical creature that assigns a little number to
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a little piece of the domain. If we were willing to restrict ourselves to R2

and R3, we could use the techniques of vector calculus. Instead we will
use forms, also known as differential forms. Forms make possible a unified
treatment of differentiation and of the fundamental theorem of calculus:
one operator (the exterior derivative) works in all dimensions, and one
short, elegant statement (the generalized Stokes’s theorem) generalizes the
fundamental theorem of calculus to all dimensions. In contrast, vector cal-
culus requires special formulas, operators, and theorems for each dimension
where it works.x

y

Figure 6.0.1.
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But the language of vector calculus is used in many science courses,
particularly at the undergraduate level. In addition, the functions and
vector fields of vector calculus are more intuitive than forms. A vector field
is an object that one can picture, as in Figure 6.0.1. Coming to terms with
forms requires more effort: we can’t draw you a picture of a form. A k-form
is, as we shall see, something like the determinant: it takes k vectors, fiddles
with them until it has a square matrix, and then takes its determinant.

The important difference be-
tween determinants and k-forms is
that a k-form on Rn is a function
of k vectors, while the determinant
on Rn is a function of n vectors;
determinants are defined only for
square matrices.

For these two reasons we have devoted three sections to translating be-
tween forms and vector calculus: Section 6.5 relates forms on R3 to func-
tions and vector fields, Section 6.8 shows that the exterior derivative we
define using forms has three separate incarnations in the language of vector
calculus: grad, curl, and div. Section 6.11 shows how Stokes’s theorem, a
single statement in the language of forms, becomes four more complicated
statements in the language of vector calculus.

In Section 6.9 we discuss the pullback of form fields, which describes how
integrands transform under changes of variables.

Because forms work in any dimension, they are the natural way to ap-
proach two towering subjects that are inherently four-dimensional: electro-
magnetism and the theory of relativity. Electromagnetism is the subject
of Section 6.12. Section 6.13 introduces the cone operator to deal with
potentials in sufficient generality to apply to electromagnetism.

Section 6.12 is an ambitious
treatment of electromagnetism us-
ing forms; we will see that Max-
well’s laws can be written in the
elegant form

dF = 0, dM = 4πJ.

We begin by introducing forms; we will then see (Section 6.2) how to
integrate forms over parametrized domains (domains that come with an
inherent orientation), before tackling the issue of orientation in Sections
6.3 and 6.4.

6.1 Forms on Rn

In Section 4.8 we saw that the determinant is the unique antisymmetric
and multilinear function of n vectors in Rn that gives 1 if evaluated on the
standard basis vectors. Because of the connection between the determinant
and volume described in Section 4.9, the determinant is fundamental to
changes of variables in multiple integrals, as we saw in Section 4.10.

Our treatment of forms, espe-
cially the exterior derivative, was
influenced by Vladimir Arnold’s
book Mathematical Methods of
Classical Mechanics.

Here we will study the multilinear antisymmetric functions of k vectors
in Rn, where k ≥ 0 may be any integer, though we will see that the only
interesting case is when k ≤ n. Again there is a close relation to vol-
umes; these objects, called forms or k-forms, are the right integrands for
integrating over oriented k-dimensional domains.
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inDefinition 6.1.1 (k-form on Rn). A k-form on Rn is a function ϕ
that takes k vectors in Rn and returns a number ϕ("v1, . . . ,"vk), such that
ϕ is multilinear and antisymmetric as a function of the vectors.

Definition 6.1.1 is actually the
definition of a constant k-form. In
this section we mainly discuss the
algebra of constant forms, which
we will refer to as forms. Later
in this chapter we will use k-form
fields, which have a k-form at ev-
ery point; see Definition 6.1.16.
There is the same relationship be-
tween constant forms and form
fields as between numbers and
functions.

The number k is called the degree of the form.

Antisymmetry
If you exchange any two of the

arguments of ϕ, you change the
sign of ϕ:

ϕ (!v1, . . . , !vi, . . . , !vj , . . . , !vk)

= − ϕ(!v1, . . . , !vj , . . . , !vi, . . . , !vk).

Multilinearity
If ϕ is a k-form and

!vi = a!u + b!w,

then

ϕ
(
!v1, . . . , (a!u + b!w),. . . ,!vk

)
=

aϕ(!v1,. . . ,!vi−1, !u, !vi+1,. . . ,!vk)+

bϕ(!v1,. . . , !vi−1, !w, !vi+1,. . . , !vk).

The next example is the fundamental example.

Example 6.1.2 (k-form). Let i1, . . . , ik be any k integers between 1 and
n. Then dxi1 ∧ · · ·∧dxik is that function of k vectors "v1, . . . ,"vk in Rn that
puts these vectors side by side, making the n × k matrix




v1,1 . . . v1,k

... . . .
...

vn,1 . . . vn,k



 6.1.1

and selects k rows: first row i1, then row i2, etc., and finally row ik, making
a square k × k matrix, and finally takes its determinant. For instance,

dx1 ∧ dx2︸ ︷︷ ︸
2-form









1
2

−1
1



 ,





3
−2

1
2







 = det
[

1 3
2 −2

]

︸ ︷︷ ︸
1st and 2nd rows
of original matrix

= −8. 6.1.2

dx1 ∧ dx2 ∧ dx4︸ ︷︷ ︸
3-form









1
2

−1
1



 ,





3
−2

1
2



 ,





0
1
2
1







 =det




1 3 0
2 −2 1
1 2 1



= −7 6.1.3

dx2 ∧ dx1 ∧ dx4︸ ︷︷ ︸
3-form









1
2

−1
1



 ,





3
−2

1
2



 ,





0
1
2
1







 =det




2 −2 1
1 3 0
1 2 1



 = 7 &

Equation 6.1.3: Note that to
give an example of a 3-form we
had to add a third vector. You
cannot evaluate a 3-form on two
vectors (or on four); a k-form is a
function of k vectors. But you can
evaluate a 2-form on two vectors in
R4 (as we did in equation 6.1.2) or
in R16. This is not the case for the
determinant, which is a function of
n vectors in Rn.

Example 6.1.3 (0-form). Definition 6.1.1 makes sense even if k = 0: a
0-form on Rn takes no vectors and returns a number. In other word, it is
that number. &

Remarks. 1. For now think of a form like dx1∧dx2 or dx1∧dx2∧dx4 as a
single item, without worrying about the component parts. The reason for
the wedge ∧ will be explained at the end of this section, where we discuss
the wedge product; we will see that the use of ∧ in the wedge product is
consistent with its use here. In Section 6.8 we will see that the use of d in
our notation here is consistent with its use to denote the exterior derivative.

2. The integrand |dkx| of Chapter 5 also takes k vectors in Rn and gives
a number:

|dkx|("v1, . . . ,"vk) =
√

det
(
["v1, . . . ,"vk]!["v1, . . . ,"vk]

)
. 6.1.4

But these integrands are neither multilinear nor antisymmetric. &
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Note there are no nonzero k-forms on Rn when k > n. If !v1, . . . ,!vk are
vectors in Rn and k > n, then the vectors are not linearly independent, and
at least one of them is a linear combination of the others, say

!vk =
k−1∑

i=1

ai!vi. 6.1.5

Then if ϕ is a k-form on Rn, evaluation on !v1, . . . ,!vk gives

ϕ(!v1, . . . ,!vk) = ϕ

(
!v1, . . . ,

k−1∑

i=1

ai!vi

)
=

k−1∑

i=1

aiϕ(!v1, . . . ,!vk−1,!vi). 6.1.6

The first term of the sum at right is a1ϕ(!v1, . . . ,!vk−1,!v1), the second is
a2ϕ(!v1,!v2, . . . ,!vk−1,!v2), and so on; each term evaluates ϕ on k vectors,
two of which are equal, and so (by antisymmetry) the k-form returns 0.

Geometric meaning of k-forms

Evaluating the 2-form dx1 ∧ dx2 on vectors !a, !b ∈ R3 , we have

dx1 ∧ dx2








a1

a2

a3



 ,




b1

b2

b3







 = det
[

a1 b1

a2 b2

]
= a1b2 − a2b1. 6.1.7Rather than imagining project-

ing !a and !b onto the plane to get
the vectors of equation 6.1.8, we
could imagine projecting the par-
allelogram spanned by !a and !b
onto the plane to get the parallel-
ogram spanned by the vectors of
formula 6.1.8.

If we project !a and !b onto the (x1, x2)-plane, we get the vectors
[

a1

a2

]
and

[
b1

b2

]
; 6.1.8

the determinant in equation 6.1.7 gives the signed area of the parallelogram
spanned by the vectors in equation 6.1.8.

Thus dx1∧dx2 deserves to be called the (x1, x2)-component of
signed area. Similarly, dx2 ∧ dx3 and dx1 ∧ dx3 deserve to be
called the (x2, x3)- and (x1, x3)-components of signed area.

We can now interpret equations 6.1.2 and 6.1.3 geometrically. The 2-
form dx1 ∧ dx2 tells us that the (x1, x2)-component of signed area of the
parallelogram spanned by the two vectors in equation 6.1.2 is −8. The
3-form dx1 ∧ dx2 ∧ dx4 tells us that the (x1, x2, x4)-component of signed
volume of the parallelepiped spanned by the three vectors in equation 6.1.3
is −7.

Similarly, the 1-form dx gives the x-component of signed length of a
vector, while dy gives its y-component:

dx








2

−3
1







 = det 2 = 2 and dy








2

−3
1







 = det(−3) = −3. 6.1.9

More generally (and an advantage of k-forms is that they generalize so
easily to higher dimensions), we see that

dxi








v1
...

vn







 = det[vi] = vi 6.1.10


