Change of variables for Exer-
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b. Show that ® : Q, — A is one to one.
c. What is [, y|dx dy|?

4.10.18 What is the volume of the part of the ball of equation %+ y? +2% < 4
where 22 > 2% + 2%, z > 0?

4.10.19 Let Q = [0,1] x [0,1] be the unit square in R?, and let ® : R?> — R?

be defined by
2
uy)y_ [(u—-v —
qj(v>7(u2+v)' Set A = 9(Q).

a. Sketch A, by computing the image of each of the sides of @ (they are all
arcs of parabolas).

b. Show that & : Q — A is 1-1.
c. What is [, «|dzdy| ?

4.10.20 Solve Exercise 4.5.19 again, using the change of variables in the margin.

4.10.21 The moment of inertia of a body X C R? around an axis is the integral
/ (r(x))?|d*x|, where r(x) is the distance from x to the axis.
Jx

a. Let f be a nonnegative continuous function of = € [a,b], and let B be the
body obtained by rotating the region 0 < y < f(z), a < x < b around the z-axis.

What is the moment of inertia of B around the z-axis?

b. What number does this give when f(z) =cosz, a= fg, b= g?

4.11 LEBESGUE INTEGRALS

This new integral of Lebesgue is proving itself a wonderful tool. I
might compare it with a modern Krupp gun, so easily does it penetrate
barriers which were impregnable—Edward Van Vleck, Bulletin of the
American Mathematical Society, vol. 23, 1916.

So far we have restricted ourselves to integrals of bounded functions with

There are many reasons to bounded support, whose upper and lower sums are equal. But often we will
study Lebesgue integrals. An es- want to integrate functions that are not bounded or do not have bounded
sential one is the Fourier trans- support. Lebesgue integration makes this possible. It also has two other

form, the fundamental tool of en- advantages:
gineering and signal processing,
not to mention harmonic analy- 1. Lebesgue integrals exist for functions plagued with the kind of “local

sis. (The Fourier transform is dis-
cussed at the end of this section.)
Lebesgue integrals are also ubiqui-

tous in probability theory.

nonsense” that we saw in the function that is 1 at rational numbers
in [0,1] and O elsewhere (Example 4.3.3). The Lebesgue integral
ignores local nonsense on sets of measure 0.

2. Lebesgue integrals are better behaved with respect to limits.



Our approach to Lebesgue inte-
gration is very different from the
standard one. The usual way of
defining the Lebesgue integral

[ sela

is to cut up the codomain R into
small intervals I; = [z;, zi41], and
to approximate the integral by

S a1,

where pu(A) is the measure of A,
then letting the decomposition of
the codomain become arbitrarily
fine. Of course, this requires say-
ing what subsets are measurable,
and defining their measure. This
is the main task with the standard
approach, and for this reason the
theory of Lebesgue integration is
often called measure theory.

It is surprising how much more
powerful the theory is when one
decomposes the codomain rather
than the domain. But one pays a
price: it isn’t at all clear how one
would approximate a Lebesgue in-
tegral: figuring out what the sets
f~'(I;) are, never mind finding
their measure, is difficult or im-
possible even for the simplest func-
tions.

We take a different tack, build-
ing on the theory of Riemann in-
tegrals, and defining the integral
directly by taking limits of func-
tions that are Riemann integrable.
We get measure theory at the end
as a byproduct: just as Riemann
integrals are used to define vol-
ume, Lebesgue integrals can be
used to define measure. This is
discussed in Appendix A21.
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Remark. If Lebesgue integration is superior to Riemann integration, why
did we put so much emphasis on Riemann integration earlier in this chapter?
Riemann integrals have one great advantage over Lebesgue integrals: they
can be computed using Riemann sums. Lebesgue integrals can only be com-
puted via Riemann integrals (or perhaps by using Monte Carlo methods).
Thus our approach is in keeping with our emphasis on computationally
effective algorithms. A

Before defining the Lebesgue integral, we will discuss the behavior of
Riemann integrals with respect to limits.

Integrals and limits

The behavior of integrals under limits is often important. Here we give the
best general statements about Riemann integrals and limits.

We would like to be able to say that if k — fj is a convergent sequence
of functions, then, as k — oo,

/nmf,~c :hm/fk.

In one setting this is true and straightforward: when k — fi is a uniformly

4.11.1

convergent sequence of integrable functions, all with support in the same
bounded set. The key condition in Definition 4.11.1 is that given e, the
same K works for all x.

Definition 4.11.1 (Uniform convergence). A sequence k — fj of
functions fr : R™ — R converges uniformly to a function f if for every
€ > 0, there exists K such that when &k > K, then, for all x € R",

[fe(x) = f(x)| <e.

The three sequences of functions in Example 4.11.3 do not converge
uniformly, although they do converge. Uniform convergence on all of R™
isn’t a very common phenomenon, unless something is done to cut down the
domain. For instance, suppose that k& — py is a sequence of polynomials

pr(x) = aok + a1k + - + am ™ 4.11.2

all of degree < m, and that this sequence “converges” in the “obvious”
sense that for each degree i (i.e., each z'), the sequence of coefficients
ai0,0i,1,0;2,... converges. Then k — p;, does not converge uniformly on
R. But for any bounded set A, the sequence k +— pil4 does converge

uniformly.!®

Instead of writing prla we could write “py, restricted to A”.



