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Manifolds, Taylor polynomials,

quadratic forms, and curvature

Thomson [Lord Kelvin] had predicted the problems of the first
[transatlantic] cable by mathematics. On the basis of the same math-
ematics he now promised the company a rate of eight or even 12
words a minute. Half a million pounds was being staked on the cor-
rectness of a partial differential equation.—T. W. Körner, Fourier
Analysis

3.0 Introduction

This chapter is something of a grab bag. The various themes are related, but
the relationship is not immediately apparent. We begin with two sections
on geometry. In Section 3.1 we use the implicit function theorem to define
smooth curves, smooth surfaces, and more general k-dimensional “surfaces”
in Rn, called manifolds. In Section 3.2 we discuss linear approximations to
manifolds: tangent spaces.

When a computer calculates
sines, it does not look up the an-
swer in some mammoth table of
sines; stored in the computer is a
polynomial that very well approx-
imates sinx for x in some partic-
ular range. Specifically, it uses
a formula very close to equation
3.4.6:

sinx = x + a3x
3 + a5x

5 + a7x
7

+ a9x
9 + a11x

11 + ε(x),

where the coefficients are

a3 = −.1666666664

a5 = .0083333315

a7 = −.0001984090

a9 = .0000027526

a11 = −.0000000239.

When |x| ≤ π/2,

the error ε(x) is guaranteed to be
less than 2 × 10−9, good enough
for a calculator that computes to
eight significant digits. The com-
puter needs only to remember five
coefficients and do a bit of arith-
metic to replace a huge table of
sines.

We switch gears in Section 3.3, where we use higher partial derivatives to
construct the Taylor polynomial of a function in several variables. We saw
in Section 1.7 how to approximate a nonlinear function by its derivative;
here we see that we can better approximate Ck functions using Taylor poly-
nomials when k ≥ 2. This is useful, since polynomials, unlike sines, cosines,
exponentials, square roots, logarithms, . . . can actually be computed us-
ing arithmetic. Computing Taylor polynomials by calculating higher partial
derivatives can be quite unpleasant; in Section 3.4 we show how to compute
them by combining Taylor polynomials of simpler functions.

In Sections 3.5 and 3.6 we take a brief detour, introducing quadratic
forms and seeing how to classify them according to their “signature”: if
we consider the second-degree terms of a function’s Taylor polynomial as a
quadratic form, its signature usually tells us whether at a point where the
derivative vanishes the function has a minimum value, a maximum value,
or some kind of saddle, like a mountain pass. In Section 3.7 we use La-
grange multipliers to find extrema of a function restricted to some manifold
M ⊂ Rn; we use Lagrange multipliers to prove the spectral theorem.

In Section 3.8 we introduce finite probability spaces, and show how the
singular value decomposition (a consequence of the spectral theorem) gives
rise to principal component analysis, of immense importance in statistics.

In Section 3.9 we give a brief introduction to the vast and important
subject of the geometry of curves and surfaces, using the higher-degree
approximations provided by Taylor polynomials: the curvature of a curve
or surface depends on the quadratic terms of the functions defining it, and
the torsion of a space curve depends on the cubic terms.

283



284 Chapter 3. Manifolds, Taylor polynomials, quadratic forms, curvature

3.1 Manifolds

Everyone knows what a curve is, until he has studied enough math-
ematics to become confused through the countless number of possible
exceptions—Felix Klein

In this section we introduce one more actor in multivariable calculus. So
far, our mappings have been first linear, then nonlinear with good linear
approximations. But the domain and codomain of our mappings have been
“flat” open subsets of Rn. Now we want to allow “nonlinear” Rn’s, called
smooth manifolds.

These familiar objects are by
no means simple: already, the
theory of soap bubbles is a diffi-
cult topic, with a complicated par-
tial differential equation control-
ling the shape of the film. Manifolds are a generalization of the familiar curves and surfaces of

every day experience. A one-dimensional manifold is a smooth curve; a
two-dimensional manifold is a smooth surface. Smooth curves are idealiza-
tions of things like telephone wires or a tangled garden hose. Particularly
beautiful smooth surfaces are produced when you blow soap bubbles that
wobble and slowly vibrate as they drift through the air. Other examples
are shown in Figure 3.1.2.

Figure 3.1.1.
Felix Klein (1849–1925)

Klein’s work in geometry “has

become so much a part of our

present mathematical thinking

that it is hard for us to realise

the novelty of his results.”—From

a biographical sketch by J. O’Con-

nor and E. F. Robertson. Klein

was also instrumental in develop-

ing Mathematische Annalen into

one of the most prestigious math-

ematical journals.

Figure 3.1.2. Four surfaces in R3. The top two are graphs of functions. The

bottom two are locally graphs of functions. All four qualify as smooth surfaces

(two-dimensional manifolds) under Definition 3.1.2.

We will define smooth manifolds mathematically, excluding some objects
that we might think of as smooth: a figure eight, for example. We will see
how to use the implicit function theorem to tell whether the locus defined
by an equation is a smooth manifold. Finally, we will compare knowing a
manifold by equations, and knowing it by a parametrization.
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Smooth manifolds in Rn

When is a subset X ⊂ Rn a smooth manifold? Our definition is based on
the notion of a graph.

inDefinition 3.1.1 (Graph). The graph of a function f : Rk → Rn−k is

the set of points
(

x
y

)
∈ Rn such that f(x) = y. It is denoted Γ(f).

It is convenient to denote a
point in the graph of a function

f : Rk → Rn−k as

(
x

f(x)

)
, with

x ∈ Rk and f(x) ∈ Rn−k. But
this presupposes that the “active”
variables are the first variables,
which is a problem, since we usu-
ally cannot use the same active
variables at all points of the man-
ifold.

How then might we describe a
point z in the graph of a func-
tion f : Rk → Rn−k, where
the variables of the domain of
f have indices i1, . . . , ik and the
variables of the codomain have in-
dices j1, . . . , jn−k? Here is an ac-
curate if heavy-handed approach,
using the “concrete to abstract”
linear transformation Φ of Defini-
tion 2.6.12. Set

x =




x1
...

xk



 , y =




y1

...
yn−k





with f(x) = y. Define Φd (d for
the domain of f) and Φc (c for
codomain) by

Φd(x) = x1#ei1 + · · · + xk#eik

Φc(y) = y1#ej1 + · · · + yn−k#ejn−k ,

where the #e’s are standard basis
vectors in Rn. Then the graph of
f is the set of z such that

z = Φd(x) + Φc(f(x)).

Thus the graph of a function f lives in a space whose dimension is the
sum of the dimensions of the domain and codomain of f .

Traditionally we graph functions f : R → R with the horizontal x-
axis corresponding to the input, and the vertical axis corresponding to
the output (values of f). Note that the graph of such a function is a
subset of R2. For example, the graph of f(x) = x2 consists of the points(

x
f(x)

)
∈ R2, i.e., the points

(
x
x2

)
.

The top two surfaces shown in Figure 3.1.2 are graphs of functions from
R2 to R: the surface on the left is the graph of f

(
x
y

)
= x3 − 2xy2; that

on the right is the graph of f
(

x
y

)
= x2 + y4. Although we depict these

graphs on a flat piece of paper, they are actually subsets of R3. The first

consists of the points




x
y

x3 − 2xy2



, the second of the points




x
y

x2 + y4



.

Definition 3.1.2 says that if a function f : Rk → Rn−k is C1, then its
graph is a smooth n-dimensional manifold in Rn. Thus the top two graphs
shown in Figure 3.1.2 are two-dimensional manifolds in R3.

But the torus and helicoid shown in Figure 3.1.2 are also two-dimensional
manifolds. Neither is the graph of a single function expressing one variable
in terms of the other two. But both are locally graphs of functions.

inDefinition 3.1.2 (Smooth manifold in Rn). A subset M ⊂ Rn is a
smooth k-dimensional manifold if locally it is the graph of a C1 mapping
f expressing n − k variables as functions of the other k variables.

With this definition, which depends on chosen coordinates, it isn’t obvi-
ous that if you rotate a smooth manifold it is still smooth. We will see in
Theorem 3.1.16 that it is.

Since the function f of Defini-
tion 3.1.2 is C1, its domain must
be open. If f is Cp rather than C1,
then the manifold is a Cp mani-
fold.

Generally, “smooth” means “as many times differentiable as is relevant
to the problem at hand”. In this and the next section, it means of class C1.
When speaking of smooth manifolds, we often omit the word smooth.1

“Locally” means that every point x ∈ M has a neighborhood U ⊂ Rn

such that M ∩U (the part of M in U) is the graph of a mapping expressing

1Some authors use “smooth” to mean C∞: “infinitely many times differen-
tiable”. For our purposes this is overkill.
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n − k of the coordinates of each point in M ∩ U in terms of the other
k. This may sound like an unwelcome complication, but if we omitted the
word “locally” then we would exclude from our definition most interesting
manifolds. We already saw that neither the torus nor the helicoid of Figure
3.1.2 is the graph of a single function expressing one variable as a function
of the other two. Even such a simple curve as the unit circle is not the
graph of a single function expressing one variable in terms of the other.
In Figure 3.1.3 we show another smooth curve that would not qualify as a
manifold if we required it to be the graph of a single function expressing
one variable in terms of the other; the caption justifies our claim that this
curve is a smooth curve.

A manifold M embedded in
Rn, denoted M ⊂ Rn, is some-
times called a submanifold of Rn.
Strictly speaking, it should not be
referred to simply as a “manifold”,
which can mean an abstract man-
ifold, not embedded in any space.
The manifolds in this book are all
submanifolds of Rn for some n.

Especially in higher dimen-
sions, making some kind of global
sense of a patchwork of graphs of
functions can be quite challenging;
a mathematician trying to picture
a manifold is rather like a blind-
folded person who has never met
or seen a picture of an elephant
seeking to identify one by patting
first an ear, then the trunk or a
leg. It is a subject full of open
questions, some fully as interest-
ing and demanding as, for exam-
ple, Fermat’s last theorem, whose
solution after more than three cen-
turies aroused such passionate in-
terest.

Three-dimensional and four-
dimensional manifolds are of par-
ticular interest, in part because of
applications in representing space-
time.

I
I1

J1

J

y

x

Figure 3.1.3. Above, I and I1 are intervals on the x-axis; J and J1 are intervals

on the y-axis. The darkened part of the curve in the shaded rectangle I × J is

the graph of a function expressing x ∈ I as a function of y ∈ J , and the darkened

part of the curve in I1 × J1 is the graph of a function expressing y ∈ J1 as a

function of x ∈ I1. (By decreasing the size of J1 a bit, we could also think of

the part of the curve in I1 × J1 as the graph of a function expressing x ∈ I1 as

a function of y ∈ J1.) But we cannot think of the darkened part of the curve in

I × J as the graph of a function expressing y ∈ J as a function of x ∈ I; there

are values of x that give two different values of y, and others that give none, so

such a “function” is not well defined.

Figure 3.1.4.

The graph of f(x) = |x| is not

a smooth curve.

Example 3.1.3 (Graph of smooth function is smooth manifold).
The graph of any smooth function is a smooth manifold. The curve of
equation y = x2 is a one-dimensional manifold: the graph of y as the
function f(x) = x2. The curve of equation x = y2 is also a one-dimensional
manifold: the graph of a function representing x as a function of y. Each
surface at the top of Figure 3.1.2 is the graph of a function representing z
as a function of x and y. '

Example 3.1.4 (Graphs that are not smooth manifolds). The graph
of the function f : R → R, f(x) = |x|, shown in Figure 3.1.4, is not a


