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3.6.5 a. Find the critical points of the function f




x
y
z



= xy + yz − xz + xyz.

b. Determine the nature of each critical point.

3.6.6 Find all the critical points of the following functions:

a. sinx cos y b. xy +
8
x

+
1
y

*c. sinx + sin y + sin(x + y)

3.6.7 a. Find the critical points of the function f

(
x
y

)
= (x2 + y2)ex2−y2

.

b. Determine the nature of each critical point.

3.6.8 a. Write the Taylor polynomial of f

(
x
y

)
=

√
1 − x + y2 to degree 3 at

the origin.

b. Show that g

(
x
y

)
=

√
1 − x + y2 + x/2 has a critical point at the origin.

What kind of critical point is it?

3.7 Constrained critical points and Lagrange
multipliers

The shortest path between two points is a straight line. But what is the
shortest path if you are restricted to paths that lie on a sphere (for example,
because you are flying from New York to Paris)? This example is intuitively
clear but quite difficult to address.

Here we will look at easier problems in the same spirit. We will be
interested in extrema of a function f when f is either defined on a manifold
X ⊂ Rn or restricted to it. In the case of the set X ⊂ R8 describing
the position of four linked rods in the plane (Example 3.1.8), we might
imagine that each of the four joints connecting the rods at the vertices xi

is connected to the origin by a rubber band, and that the vertex xi has
a “potential” |!xi|2. Then what is the equilibrium position, where the link
realizes the minimum of the potential energy? Of course, all four vertices
try to be at the origin, but they can’t. Where will they go? In this case
the function “sum of the |!xi|2” is defined on the ambient space, but there
are important functions that are not, such as the curvature of a surface.

Finding shortest paths goes un-
der the name of the calculus of
variations. The set of paths from
New York to Paris is an infinite-
dimensional manifold. We will
be restricting ourselves to finite-
dimensional problems. But the
tools we develop apply quite well
to the infinite-dimensional setting.

Another example occurs in Sec-
tion 2.9: the norm

sup
|!x|=1

|A!x|

of a matrix A answers the ques-
tion, what is sup |A!x| when we re-
quire that !x have length 1?

In this section we provide tools to answer this sort of question.

Finding constrained critical points using derivatives

Recall that in Section 3.2 we defined the derivative of a function defined
on a manifold. Thus we can make the obvious generalization of Definition
3.6.2.
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The derivative [Df(x)] of f is
only defined on the tangent space
TxX, so saying that it is 0 is saying
that it vanishes on tangent vectors
to X.

inDefinition 3.7.1 (Critical point of function defined on manifold).
Let X ⊂ Rn be a manifold, and f : X → R be a C1 function. Then a
critical point of f is a point x ∈ X where [Df(x)] = 0.

An important special case is when f is defined not just on X but on an
open neighborhood U ⊂ Rn of X; in that case we are looking for critical
points of the restriction f |X of f to X.

Analyzing critical points of
functions f : X → R isn’t quite
the focus of this section; we are re-
ally concerned with functions g de-
fined on a neighborhood of a mani-
fold X and studying critical points
of the restriction of g to X.

Traditionally a critical point of
g restricted to X is called a con-
strained critical point .

inTheorem 3.7.2. Let X ⊂ Rn be a manifold, f : X → R a C1 function,
and c ∈ X a local extremum of f . Then c is a critical point of f .

Proof. Let γ :V → X be a parametrization of a neighborhood of c ∈ X,
with γ(x0) = c. Then c is an extremum of f precisely if x0 is an extremum
of f ◦ γ. By Theorem 3.6.3, [Df ◦ γ(x0)] = [0], so, by Proposition 3.2.11,

[D(f ◦ γ)(x0)] = [Df(γ(x0))][Dγ(x0)] = [Df(c)][Dγ(x0)] = [0].

By Proposition 3.2.7, the image of [Dγ(x0)] is TcX, so [Df(c)] vanishes on
TcX. The proof is illustrated by Figure 3.7.1.
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Figure 3.7.1 The parametrization
γ takes a point in R2 to the manifold
X; f takes it to R. An extremum of the
composition f ◦ γ corresponds to an ex-
tremum of f . !

We already used the idea of the proof in Example 2.9.9, where we found

the maximum of |Ax| restricted to the unit circle, for A =
[

1 1
0 1

]
.

In Examples 3.7.3 and 3.7.4
we know a critical point to begin
with, and we show that equation
3.7.1 is satisfied:

TcX ⊂ ker [Df(c)].

Theorem 3.7.5 will show how to
find critical points of a function re-
stricted to a manifold (rather than
defined on the manifold, as in Defi-
nition 3.7.1), when the manifold is
known by an equation F(z) = 0.

Examples 3.7.3 and 3.7.4 illustrate constrained critical points. They
show how to check that a maximum or minimum is indeed a critical point
satisfying Definition 3.7.1.

Suppose a manifold X is defined by the equation F(z) = 0, where
F : U ⊂ Rn → Rn−k has onto derivative [DF(x)] for all x ∈ U ∩ X,
and suppose f :U → R is a C1 function. Then Definition 3.7.1 says that c
is a critical point of f restricted to X if

TcX =︸︷︷︸
Thm. 3.2.4

ker [DF(c)] ⊂︸︷︷︸
Def. 3.7.1

ker [Df(c)]. 3.7.1

Note that both derivatives in formula 3.7.1 have the same width, as they
must for that equation to make sense; [DF(c)] is a (n− k)×n matrix, and
[Df(c)] is a 1 × n matrix, so both can be evaluated on a vector in Rn. It


