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Indeed,
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Going from the first to sec-
ond line of inequality 2.8.50: Since
(a + b)2 ≤ 2(a2 + b2), we have

(y − y′ + u3 − u′
3)

2

≤ 2(y − y′)2 + 2(u3 − u′
3)

2. Thus
√

7 is a Lipschitz ratio for [Df̃ ]. "

For all systems of polynomial equations, a similar trick will work and
provide a Lipschitz ratio that can be computed, perhaps laboriously, but
requiring no invention.

Kantorovich’s theorem

Now we are ready to tackle Kantorovich’s theorem. It says that if the
product of three quantities is ≤ 1/2, then the equation !f(x) = !0 has a
unique root in a closed ball U0, and if you start with an appropriate initial
guess a0, Newton’s method will converge to that root.

Note that the domain and co-
domain of the map !f have the
same dimension. Thus, setting
!f(x) = !0, we get the same num-
ber of equations as unknowns. If
we had fewer equations than un-
knowns, we wouldn’t expect them
to specify a unique solution, and
if we had more equations than un-
knowns, it would be unlikely that
there would be any solutions at all.

In addition, if the domain and
codomain of the map !f had dif-
ferent dimensions, then [D!f(a0)]
would not be a square matrix, so
it would not be invertible.

inTheorem 2.8.13 (Kantorovich’s theorem). Let a0 be a point in Rn,
U an open neighborhood of a0 in Rn, and !f : U → Rn a differentiable
mapping, with its derivative [D!f(a0)] invertible. Define

!h0
def= −[D!f(a0)]−1!f(a0), a1

def= a0 + !h0, U1
def= B|!h0|(a1). 2.8.51

If U1 ⊂ U and the derivative [D!f(x)] satisfies the Lipschitz condition
∣∣[D!f(u1)]− [D!f(u2)]

∣∣ ≤ M |u1 − u2| for all points u1,u2 ∈ U1, 2.8.52

and if the inequality
∣∣!f(a0)

∣∣ ∣∣[D!f(a0)]−1
∣∣2M ≤ 1

2
2.8.53

is satisfied, the equation !f(x) = !0 has a unique solution in the closed ball
U1, and Newton’s method with initial guess a0 converges to it.
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The theorem is proved in Appendix A5.
The basic idea is simple. The first of the three quantities that must be

small is the value of the function at a0. If you are in an airplane flying
close to the ground, you are more likely to crash (find a root) than if you
are several kilometers up.

Figure 2.8.6.
Leonid Kantorovich (1912–1986)

Kantorovich was among the

first to use linear programming in

economics, in a paper published in

1939. He was awarded the Nobel

Prize in economics in 1975.

The second quantity is the square of the length of the inverse of the
derivative at a0. In one dimension, we can think that the derivative must
be big.19 If your plane is approaching the ground steeply, it is much more
likely to crash than if it is flying almost parallel to the ground.

The third quantity is the Lipschitz ratio M , measuring the change in
the derivative (i.e., acceleration). If at the last minute the pilot pulls the
plane out of a nose dive, flight attendants may be thrown to the floor as
the derivative changes sharply, but a crash will be avoided. (Remember
that acceleration need not be a change in speed; it can also be a change in
direction.)

But it is not each quantity individually that must be small: the product
must be small. If the airplane starts its nose dive too close to the ground,
even a sudden change in derivative may not save it. If it starts its nose dive
from an altitude of several kilometers, it will still crash if it falls straight
down. And if it loses altitude progressively, rather than plummeting to
earth, it will still crash (or at least land) if the derivative never changes.

When discussing Kantorovich’s
theorem and Newton’s method we
write !f(x) = !0, (with arrows) be-
cause we think of the codomain of
!f as a vector space; the definition
of !h0 only makes sense if !f(a0) is a
vector. Moreover, !0 plays a distin-
guished role in Newton’s method
(as it does in any vector space):
we are trying to solve !f(x) = !0,
not f(x) = a for some random a.

Remarks.

1. To check whether an equation makes sense, first make sure both sides
have the same units. In physics and engineering, this is essential.
The right side of inequality 2.8.53 is the unitless number 1/2. The
left side:

∣∣!f(a0)
∣∣ ∣∣[D!f(a0)]−1

∣∣2M 2.8.54

is a complicated mixture of units of domain and codomain, which
usually are different. Fortunately, these units cancel. To see this,
denote by u the units of the domain U , and by r the units of the
codomain Rn. The term |!f(a0)| has units r. A derivative has units
codomain/domain (typically, distance divided by time), so the in-
verse of the derivative has units domain/codomain = u/r, and the
term |[D!f(a0)]−1|2 has units u2/r2. The Lipschitz ratio M is the
distance between derivatives divided by a distance in the domain,

so its units are r/u divided by u. This gives units r× u2

r2
× r

u2
, which

cancel.
2. The Kantorovich theorem does not say that if inequality 2.8.53 is

not satisfied, the equation has no solutions; it does not even say that

19Why the theorem stipulates the square of the inverse of the derivative is more
subtle. We think of it this way: the theorem should remain true if one changes
the scale. Since the “numerator” !f(a0)M in inequality 2.8.53 contains two terms,
scaling up will change it by the scale factor squared. So the “denominator”
|[D!f(a0)]

−1|2 must also contain a square.


