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Vectors, matrices, and derivatives

It is sometimes said that the great discovery of the nineteenth century
was that the equations of nature were linear, and the great discovery
of the twentieth century is that they are not.—Tom Körner, Fourier
Analysis

1.0 Introduction

In this chapter, we introduce the principal actors of linear algebra and
multivariable calculus.

One problem of great interest
at present is protein folding. The
human genome is now known; in
particular, we know the sequence
of amino acids of all the proteins
in the body. But proteins are only
active when they are curled up
in just the right way; the world’s
biggest computers are busy try-
ing to derive from the sequence
of amino acids just how they will
fold.

Specifying the position and ori-
entation of all N amino acid re-
quires 6N numbers; each such con-
figuration has a potential energy,
and the preferred folding corre-
sponds to a minimum of this po-
tential energy. Thus the prob-
lem of protein folding is essentially
finding the minima of a function of
6N variables, where N might be
1000.

Although many approaches of
this problem are actively being
pursued, there is no very satisfac-
tory solution so far. Understand-
ing this function of 6N variables is
one of the main challenges of the
age.

By and large, first year calculus deals with functions f that associate
one number f(x) to one number x. In most realistic situations, this is
inadequate: the description of most systems depends on many functions of
many variables.

In physics, a gas might be described by pressure and temperature as a
function of position and time, two functions of four variables. In biology,
one might be interested in numbers of sharks and sardines as functions of
position and time; a famous study of sharks and sardines in the Adriatic,
described in The Mathematics of the Struggle for Life by Vito Volterra,
founded the subject of mathematical ecology.

In microeconomics, a company might be interested in production as a
function of input, where that function has as many coordinates as the num-
ber of products the company makes, each depending on as many inputs as
the company uses. Even thinking of the variables needed to describe a
macroeconomic model is daunting (although economists and the govern-
ment base many decisions on such models). Countless examples are found
in every branch of science and social science.

Mathematically, all such things are represented by functions f that take
n numbers and return m numbers; such functions are denoted f : Rn → Rm.
In that generality, there isn’t much to say; we must impose restrictions on
the functions we will consider before any theory can be elaborated.

The strongest requirement we can make is that f should be linear ;
roughly speaking, a function is linear if when we double the input, we
double the output. Such linear functions are fairly easy to describe com-
pletely, and a thorough understanding of their behavior is the foundation
for everything else.

The first four sections of this chapter lay the foundations of linear alge-
bra. In the first three sections we introduce the main actors – vectors and
matrices – and relate them to the notion of a linear function.
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Next we develop the geometrical language that we will need in multi-
variable calculus. The realization by René Decartes (1596–1650) that an
equation can denote a curve or surface was a crucial moment in the his-
tory of mathematics, integrating two fields, algebra and geometry, that
had previously seemed unrelated. We do not want to abandon this dou-
ble perspective when we move to higher dimensions. Just as the equation
x2 +y2 = 1 and the circle of radius 1 centered at the origin are one and the
same object, we will want to speak both of the 9-dimensional unit sphere
in R10 and of the equation denoting that sphere. In Section 1.4 we define
such notions as the length of a vector in Rn, the length of a matrix, and
the angle between two vectors. This will enable us to think and speak in
geometric terms about higher-dimensional objects.

One object of linear algebra is
to extend to higher dimensions the
geometric language and intuition
we have concerning the plane and
space, familiar to us all from ev-
eryday experience.

When we discuss solving sys-
tems of equations in Chapter 2, we
will also want to be able to inter-
pret algebraic statements geomet-
rically. You learned in school that
saying that two equations in two
unknowns have a unique solution
is the same as saying that the two
lines given by those equations in-
tersect in a single point. In higher
dimensions we will want, for ex-
ample, to be able to speak of the
“space of solutions” of a particu-
lar system of equations as being a
four-dimensional subspace of R7.

In Section 1.5 we discuss sequences, subsequences, limits, and conver-
gence. In Section 1.6 we will expand on that discussion, developing the
topology needed for a rigorous treatment of calculus.

Most functions are not linear, but very often they are well approximated
by linear functions, at least for some values of the variables. For instance,
as long as there are few hares, their number may well quadruple every three
or four months, but as soon as they become numerous, they will compete
with each other, and their rate of increase (or decrease) will become more
complex. In the last three sections of this chapter we begin exploring how
to approximate a nonlinear function by a linear function – specifically, by
its higher-dimensional derivative.

1.1 Introducing the actors: Points and vectors

Much of linear algebra and multivariate calculus takes place within Rn.
This is the space of ordered lists of n real numbers.

The notion that one can think
about and manipulate higher-
dimensional spaces by considering
a point in n-dimensional space as
a list of its n “coordinates” did not
always appear as obvious to math-
ematicians as it does today. In
1846, the English mathematician
Arthur Cayley pointed out that a
point with four coordinates can be
interpreted geometrically without
recourse to “any metaphysical no-
tion concerning the possibility of
four-dimensional space.”

You are probably used to thinking of a point in the plane in terms of
its two coordinates: the familiar Cartesian plane with its x, y axes is R2.
A point in space (after choosing axes) is specified by its three coordinates:
Cartesian space is R3. Similarly, a point in Rn is specified by its n coordi-
nates; it is a list of n real numbers. Such ordered lists occur everywhere,
from grades on a transcript to prices on the stock exchange. Seen this way,
higher dimensions are no more complicated than R2 and R3; the lists of
coordinates just get longer.

Example 1.1.1 (The stock market). The following data is from the
Ithaca Journal, Dec. 14, 1996.

Local Nyse Stocks
Vol High Low Close Chg

Airgas 193 241/2 231/8 235/8 -3/8
AT&T 36606 391/4 383/8 39 3/8
Borg Warner 74 383/8 38 38 -3/8
Corning 4575 443/4 43 441/4 1/2
Dow Jones 1606 331/4 321/2 331/4 1/8
Eastman Kodak 7774 805/8 791/4 793/8 -3/4
Emerson Elec. 3335 973/8 955/8 955/8 -11/8
Federal Express 5828 421/2 41 415/8 11/2
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We can think of this table as five columns, each an element of R8:




193
36606

74
4575
1606
7774
3335
5828





︸ ︷︷ ︸
Vol





241/2
391/4
383/8
443/4
331/4
805/8
973/8
421/2





︸ ︷︷ ︸
High





231/8
383/8
38
43

321/2
791/4
955/8
41





︸ ︷︷ ︸
Low





235/8
39
38

441/4
331/4
793/8
955/8
415/8





︸ ︷︷ ︸
Close





−3/8
3/8

−3/8
1/2
1/8

−3/4
−11/8

11/2





︸ ︷︷ ︸
Chg

“Vol” denotes the number of
shares traded, “High” and “Low”
the highest and lowest price paid
per share, “Close” the price when
trading stopped at the end of the
day, and “Chg” the difference be-
tween the closing price and the
closing price on the previous day.

Note that we use parentheses for “positional” data (for example, highest
price paid per share), and brackets for “incremental” data (for example,
change in price). Note also that we write elements of Rn as columns, not
rows. The reason for preferring columns will become clear later: we want
the order of terms in matrix multiplication to be consistent with the nota-
tion f(x), where the function is placed before the variable.

Remark. Time is sometimes referred to as “the fourth dimension”. This
is misleading. A point in R4 is simply four numbers. If the first three
numbers give the x, y, z coordinates, the fourth number might give time.
But the fourth number could also give temperature, or density, or some
other information. In addition, as shown in the above example, there is
no need for any of the numbers to denote a position in physical space; in
higher dimensions, it can be more helpful to think of a point as a “state”
of a system. If 3356 stocks are listed on the New York Stock Exchange,
the list of closing prices for those stocks is an element of R3356, and every
element of R3356 is one theoretically possible state of closing prices on the
stock market. (Of course, some such states will never occur; for instance,
stock prices are positive.) #

Points and vectors: Positional data versus incremental data

An element of Rn is simply an ordered list of n numbers, but such a list
can be interpreted in two ways: as a point representing a position or as a
vector representing a displacement or increment.

inDefinition 1.1.2 (Point, vector, and coordinates). The element
of Rn with coordinates x1, x2, · · · , xn can be interpreted as the point

x =




x1
...

xn



 or as the vector !x =




x1
...

xn



, which represents an increment.

Example 1.1.3 (An element of R2 as a point and as a vector). The
element of R2 with coordinates x = 2, y = 3 can be interpreted as the point
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(
2
3

)
in the plane, as shown in Figure 1.1.1. But it can also be interpreted

as the instructions “start anywhere and go two units right and three units
up,” rather like instructions for a treasure hunt: “take two giant steps to
the east, and three to the north”; this is shown in Figure 1.1.2. Here we are

interested in the displacement: if we start at any point and travel
[

2
3

]
, how

far will we have gone, in what direction? When we interpret an element of
Rn as a position, we call it a point; when we interpret it as a displacement
or increment, we call it a vector. #
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Figure 1.1.1.

The point
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3
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Figure 1.1.2.

All the arrows represent the

same vector,

[
2
3

]
.

Example 1.1.4 (Points and vectors in R3356). If 3356 stocks are
listed on the New York Stock Exchange, the list of closing prices for those
stocks is a point in R3356. The list telling how much each stock gained
or lost compared with the previous day is also an element of R3356, but
this corresponds to thinking of the element as a vector, with direction and
magnitude: did the price of each stock go up or down? How much? #

In the plane and in three-dimensional space a vector can be depicted
as an arrow pointing in the direction of the displacement. The amount
of displacement is the length of the arrow. This does not extend well to
higher dimensions. How are we to picture the “arrow” in R3356 representing
the change in prices on the stock market? How long is it, and in what
“direction” does it point? We will show how to compute magnitudes and
directions for vectors in Rn in Section 1.4.

Remark. In physics textbooks and some first year calculus books, vec-
tors are often said to represent quantities (velocity, forces) that have both
“magnitude” and “direction,” while other quantities (length, mass, vol-
ume, temperature) have only “magnitude” and are represented by numbers
(scalars). We think this focuses on the wrong distinction, suggesting that
some quantities are always represented by vectors while others never are,
and that it takes more information to specify a quantity with direction than
one without.

The volume of a balloon is a single number, but so is the vector express-
ing the difference in volume between an inflated balloon and one that has
popped. The first is a number in R, while the second is a vector in R.
The height of a child is a single number, but so is the vector expressing
how much she has grown since her last birthday. A temperature can be a
“magnitude,” as in “It got down to −20 last night,” but it can also have
“magnitude and direction,” as in “It is 10 degrees colder today than yester-
day.” Nor can “static” information always be expressed by a single number:
the state of the stock market at a given instant requires one number for
each stock listed – as does the vector describing the change in the stock
market from one day to the next. #


