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1.8.11 Show that if f

(
x
y

)
= ϕ

(
x + y
x − y

)
for some differentiable function

ϕ : R → R, then

xD1f + yD2f = 0.

1.8.12 True or false? Explain your answers.

a. If f : R2 → R2 is differentiable and [Df(0)] is not invertible, then there is
no differentiable function g : R2 → R2 such that

(g ◦ f)(x) = x.

b. Differentiable functions have continuous partial derivatives.

1.8.13 Let U ⊂ Mat (n, n) be the set of matrices A such that A + A2 is
invertible. Compute the derivative of the map F : U → Mat (n, n) given by
F (A) = (A + A2)−1.

1.9 The mean value theorem and criteria for
differentiability

I turn with terror and horror from this lamentable scourge of contin-
uous functions with no derivatives.—Charles Hermite, in a letter to
Thomas Stieltjes, 1893

In this section we discuss two applications of the mean value theorem. The
first extends that theorem to functions of several variables, and the second
gives a criterion for determining when a function is differentiable.

The mean value theorem for functions of several variables

The derivative measures the difference of the values of functions at different
points. For functions of one variable, the mean value theorem (Theorem
1.6.13) says that if f : [a, b] → R is continuous, and f is differentiable on
(a, b), then there exists c ∈ (a, b) such that

f(b) − f(a) = f ′(c)(b − a). 1.9.1

The analogous statement in several variables is the following.Theorem 1.9.1: The segment
[a,b] is the image of the map

t %→ (1 − t)a + tb,

for 0 ≤ t ≤ 1.

inTheorem 1.9.1 (Mean value theorem for functions of several
variables). Let U ⊂ Rn be open, let f : U → R be differentiable, and
let the segment [a,b] joining a to b be contained in U . Then there exists
c0 ∈ [a,b] such that

f(b) − f(a) = [Df(c0)](
−→

b− a). 1.9.2
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inCorollary 1.9.2. If f is a function as defined in Theorem 1.9.1, then

|f(b) − f(a)| ≤
(

sup
c∈[a,b]

∣∣∣ [Df(c)]
∣∣∣
)
|

−→
b− a|. 1.9.3

Why do we write inequality
1.9.3 with the sup, rather than

|f(b) − f(a)| ≤ |[Df(c)]| |
−→

b − a|,

which of course is also true? Using
the sup means that we do not need
to know the value of c in order to
relate how fast f is changing to
its derivative; we can run through
all c ∈ [a,b] and choose the one
where the derivative is greatest.
This will be useful in Section 2.8
when we discuss Lipschitz ratios.

Proof of Corollary 1.9.2. This follows immediately from Theorem 1.9.1
and Proposition 1.4.11. !
Proof of Theorem 1.9.1. As t varies from 0 to 1, the point (1− t)a+ tb
moves from a to b. Consider the mapping g(t) = f((1 − t)a + tb). By the
chain rule, g is differentiable, and by the one-variable mean value theorem,
there exists t0 such that

g(1) − g(0) = g′(t0)(1 − 0) = g′(t0). 1.9.4

Set c0 = (1 − t0)a + t0b. By Proposition 1.7.14, we can express g′(t0) in
terms of the derivative of f :

g′(t0) = lim
s→0

g(t0 + s) − g(t0)
s

= lim
s→0

f
(
c0 + s((

−→
b− a)

)
− f(c0)

s
= [Df(c0)](

−→
b− a).

1.9.5

So equation 1.9.4 reads

f(b) − f(a) = [Df(c0)](
−→

b− a). ! 1.9.6

z

y
x

Figure 1.9.1.

The graph of the function f de-

fined in equation 1.9.7 is made up

of straight lines through the ori-

gin, so if you leave the origin in

any direction, the directional de-

rivative in that direction certainly

exists. Both axes are among the

lines making up the graph, so the

directional derivatives in those di-

rections are 0. But clearly there is

no tangent plane to the graph at

the origin.

Differentiability and pathological functions

Most often the Jacobian matrix of a function is its derivative. But as we
mentioned in Section 1.7, there are exceptions. It is possible for all partial
derivatives of f to exist, and even all directional derivatives, and yet for f
not to be differentiable! In such a case the Jacobian matrix exists but does
not represent the derivative.

Example 1.9.3 (Nondifferentiable function with Jacobian matrix).
This happens even for the innocent-looking function

f
(

x
y

)
=

x2y

x2 + y2
1.9.7

shown in Figure 1.9.1. Actually, we should write this function as

f
(

x
y

)
=






x2y
x2 + y2

if
(

x
y

)
&=

(
0
0

)

0 if
(

x
y

)
=

(
0
0

)
.

1.9.8

You have probably learned to be suspicious of functions that are defined
by different formulas for different values of the variable. In this case, the
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value at
(

0
0
)

is really natural, in the sense that as
(

x
y

)
approaches

(
0
0
)
,

the function f approaches 0. This is not one of those functions whose value
takes a sudden jump; indeed, f is continuous everywhere. Away from the
origin, this is obvious by Corollary 1.5.31: away from the origin, f is a
rational function whose denominator does not vanish. So we can compute
both its partial derivatives at any point

(
x
y

)
&=

(
0
0
)
.

That f is continuous at the origin requires a little checking, as follows.
If x2 + y2 = r2, then |x| ≤ r and |y| ≤ r so |x2y| ≤ r3. Therefore,

∣∣∣f
(

x
y

)∣∣∣ ≤
r3

r2
= r, and lim(

x
y

)
→

(
0
0

) f
(

x
y

)
= 0. 1.9.9

So f is continuous at the origin. Moreover, f vanishes identically on both
axes, so both partial derivatives of f vanish at the origin.

“Identically” means “at every
point.”

So far, f looks perfectly civilized: it is continuous, and both partial
derivatives exist everywhere. But consider the derivative in the direction

of the vector
[

1
1

]
:

lim
t→0

f

((
0
0
)

+ t

[
1
1

])
− f

(
0
0
)

t
= lim

t→0

t3

2t3
=

1
2
. 1.9.10

This is not what we get when we compute the same directional derivative

by multiplying the Jacobian matrix of f by the vector
[

1
1

]
, as on the right

side of equation 1.7.38:
If we change the function of

Example 1.9.3, replacing the x2y
in the numerator of

x2y
x2 + y2

by xy, then the resulting function,
which we’ll call g, will not be con-
tinuous at the origin. If x = y,
then g = 1/2 no matter how close(

x
y

)
gets to the origin: we then

have

g

(
x
x

)
=

x2

2x2
=

1
2
.

[
D1f

(
0
0
)

,D2f
(

0
0
) ]

︸ ︷︷ ︸
Jacobian matrix [Jf(0)]

[
1
1

]
= [0, 0]

[
1
1

]
= 0. 1.9.11

Thus, by Proposition 1.7.14, f is not differentiable. '
Things can get worse. The function we just discussed is continuous, but

it is possible for all directional derivatives of a function to exist, and yet for
the function not to be continuous, or even bounded in a neighborhood of
0. For instance, the function discussed in Example 1.5.24 is not continuous
in a neighborhood of the origin; if we redefine it to be 0 at the origin, then
all directional derivatives would exist everywhere, but the function would
not be continuous. Exercise 1.9.2 provides another example. Thus knowing
that a function has partial derivatives or directional derivatives does not tell
you either that the function is differentiable or even that it is continuous.

Even knowing that a function is differentiable tells you less than you
might think. The function in Example 1.9.4 has a positive derivative at x
although it does not increase in a neighborhood of x!

Example 1.9.4 (A differentiable yet pathological function). Con-
sider the function f : R → R defined by

f(x) =
x

2
+ x2 sin

1
x

, 1.9.12


