
Appendix: Analysis

A0 Introduction

This appendix is intended for students using this book for a class in analysis,
and for the occasional student in a beginning course who has mastered the
statement of the theorem and wishes to delve further.

In addition to proofs of statements not proved in the main text, it in-
cludes a justification of arithmetic (Appendix A1), a discussion of cubic
and quartic equations (Appendix A2), the Heine-Borel theorem (Appendix
A3), a definition of “big O” (Appendix A11), Stirling’s formula (Appendix
A16), and a definition of Lebesgue measure and a discussion of what sets
are measurable (Appendix A21).

A1 Arithmetic of real numbers

It is harder than one might think to define arithmetic for the reals – ad-
dition, multiplication, subtraction, and division – and to show that the
usual rules of arithmetic hold. Addition and multiplication as taught in
elementary school always start at the right, and for reals there is no right.

Because you learned to add,
subtract, divide, and multiply in
elementary school, the algorithms
used may seem obvious. But un-
derstanding how computers sim-
ulate real numbers is not nearly
as routine as you might imagine.
A real number involves an infinite
amount of information, and com-
puters cannot handle such things:
they compute with finite decimals.
This inevitably involves rounding
off, and writing arithmetic subrou-
tines that minimize round-off er-
rors is a whole art in itself. In
particular, computer addition and
multiplication are not commuta-
tive or associative. Anyone who
really wants to understand numer-
ical problems has to take a serious
interest in “computer arithmetic”.

Most equivalence classes con-
sist of a single expression, but the
equivalence class 0 has two:

+ . . . 00.00 . . . and − . . . 00.00 . . .

as do the finite decimals. For in-
stance, the equivalence class 1 con-
sists of

+ . . . 00.99 . . . and + . . . 01.00 . . . .

Recall that in Section 0.5 we defined the reals as “the set of infinite
decimals”. For rigor’s sake we will now spell out exactly what this means;
to avoid making special conventions, we will write our infinite decimals with
leading 0’s.

inDefinition A1.1 (Real numbers). The set of real numbers is the set
of equivalence classes of expressions

± . . . 000anan−1 . . . a0 .
↑
a−1a−2 . . . , A1.1

where all ai are in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and (as indicated by the ar-
row) a decimal point separates a0 and a−1. Two such expressions

a = ± . . . 0anan−1 . . . a0.a−1 . . . and b = ± . . . 0bmbm−1 . . . b0.b−1 . . .

are equivalent if and only if any of the following conditions is met:

1. They are equal.
2. All ai and all bi are 0, and the signs are opposite (this equivalence

class is called 0).
3. a and b have the same sign; there exists k such that ak != 9 and

ak−1 = ak−2 = · · · = 9, and

bj = aj for j > k, bk = ak + 1, bk−1 = bk−2 = · · · = 0.
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inDefinition A1.2 (k-truncation). The k-truncation of a real number
a = . . . 000anan−1 · · · a0 . a−1a−2 . . . is the finite decimal

[a]k
def= . . . an . . . ak000 . . . A1.2Equation AA1.2 contains a dec-

imal point but we don’t know
where to put it. It is among the
ai or among the 0’s, depending on
whether k is negative or positive.

For instance, if a = 21.3578,
then [a]−2 = 21.35.

It is tempting to say that if you take two reals, truncate (cut) them
further and further to the right and add them (or multiply them, or subtract
them, etc.) and look only at the digits to the left of any fixed position, the
digits we see will not be affected by where the truncation takes place, once
it is well beyond where we are looking. The problem with this is that it
isn’t quite true.

Example A1.3 (Addition). Consider adding the following two numbers:

.222222 . . . 222 . . .

.777777 . . . 778 . . . .
A1.3

If we truncate before the position of the 8, the sum of the truncated numbers
will be .9999 . . . 9; if we truncate after the 8, it will be 1.0000 . . . 0. So there
cannot be any rule which says, “the 100th digit will stay the same if you
truncate after the Nth digit, however large N is.” The “carry” can come
from arbitrarily far to the right. "

It is possible to define the arithmetic of real numbers in terms of digits,
but it is quite involved. Even showing that addition is associative involves
at least six different cases. None is hard, but keeping straight what you are
doing is quite delicate. Exercise A1.6 should give you enough of a taste of
this approach. We will use a different approach, based on Definition A1.5,
which says what it means for two points to be “k-close”.

Let us denote by D the set of finite decimals.

Definition A1.5: Since we don’t
yet have a notion of subtraction in
R, we can’t write |x − y| < ε for
x, y ∈ R, much less

∑
(xi − yi)

2 < ε2,

which involves addition and mul-
tiplication besides. Our definition
of k-close uses only subtraction of
finite decimals.

For instance, if a = 1.23000013
and b = 1.22999903, then a and b
are not 7-close, since

[a]−7 − [b]−7 = 11 × 10−7 > 10−7

but they are 6-close, since

[a]−6 − [b]−6 = 10−6.

The notion of k-close is the cor-
rect way of saying that two num-
bers agree to k digits after the dec-
imal point. It takes into account
the convention by which a num-
ber ending in all 9’s is equal to the
rounded up number ending in all
0’s.

The numbers .9998 and 1.0001
are 3-close (but not 4-close).

inDefinition A1.4 (Finite decimal continuity). A map f : Dn → D
is called finite decimal continuous (or D-continuous) if for all integers N
and k, there exists an integer l such that if (x1, . . . , xn) and (y1, . . . , yn)
are two elements of Dn with all |xi|, |yi| < N , and if |xi − yi| < 10−l for
all i = 1, . . . , n, then

|f(x1, . . . , xn) − f(y1, . . . , yn)| < 10−k. A1.4

Exercise A1.2 asks you to show that the functions A(x, y) = x + y,
M(x, y) = xy, S(x, y) = x − y, and Assoc(x, y, z) = (x + y) + z are D-
continuous and that 1/x is not.

To see why Definition A1.4 is the right definition, we need to say what
it means for two points x,y ∈ Rn to be close.

inDefinition A1.5 (k-close). Two points x,y ∈ Rn are k-close if∣∣[xi]−k − [yi]−k

∣∣ ≤ 10−k for each i = 1, . . . , n.
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Notice that if two numbers are k-close for all k, then they are equal (see
Exercise A1.1).

If f : Dn → D is D-continuous, then define f̃ : Rn → R by the formula

f̃(x) = sup
k

inf
l≤−k

f([x1]l, . . . , [xn]l). A1.5

inProposition A1.6. The function f̃ : Rn → R is the unique function that
coincides with f on Dn and satisfies the continuity condition that for all
k ∈ N and all N ∈ N, there exists l ∈ N such that when x,y ∈ Rn are
l-close and all coordinates xi of x satisfy |xi| < N , then f̃(x) and f̃(y)
are k-close.

The functions Ã and M̃ sat-
isfy the conditions of Proposition
A1.6; thus they apply to the real
numbers, while A and M without
tildes apply to finite decimals.

The proof is the object of Exercise A1.4. Now setting up arithmetic for
the reals is plain sailing: we can define addition and multiplication of reals
by setting

x + y = Ã(x, y) and xy = M̃(x, y), A1.6

where A(x, y) = x + y and M(x, y) = xy. It isn’t harder to show that the
basic laws of arithmetic hold:

inx + y = y + x Addition is commutative.
(x + y) + z = x + (y + z) Addition is associative.
x + (−x) = 0 Existence of additive inverse.
xy = yx Multiplication is commutative.
(xy)z = x(yz) Multiplication is associative.
x(y + z) = xy + xz Multiplication is distributive over addition.

These are all proved the same way. Let us prove the last. Consider the
function D3 → D given by

F (x, y, z) =

x(y+z)
︷ ︸︸ ︷
M

(
x,A(y, z)

)
−

xy+xz︷ ︸︸ ︷
A

(
M(x, y),M(x, z)

)
. A1.7

We leave it to you to check that F is D-continuous, and that

F̃ (x, y, z) = M̃
(
x, Ã(y, z)

)
− Ã

(
M̃(x, y), M̃(x, z)

)
. A1.8

It is one of the basic irritants
of elementary school math that
division is not defined in the world
of finite decimals.

But F is identically 0 on D3, and the identically 0 function on R3 coincides
with 0 on D3 and satisfies the continuity condition of Proposition A1.6, so
F̃ vanishes identically by the uniqueness part of Proposition A1.6.

This sets up almost all of arithmetic; the missing piece is division. Ex-
ercise A1.3 asks you to define division in the reals.

Exercises for Section A1

A1.1 Show that if two numbers are k-close for all k, then they are equal.


