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6.10 The generalized Stokes’s theorem

We worked hard to define the exterior derivative and to define orientation
of manifolds and of boundaries. Now we are going to reap some rewards for
our labor: we are going to see that there is a higher-dimensional analogue
of the fundamental theorem of calculus, Stokes’s theorem. It covers in one
statement the four integral theorems of vector calculus, which are explored
in section 6.11.

Figure 6.10.1.
Elie Cartan (1869–1951) for-

malized the theory of differential
forms in the early twentieth cen-
tury. Other names associated with
the generalized Stokes’s theorem
include Henri Poincaré, Vito Vol-
terra, and Luitzen Brouwer.

One of Cartan’s four children,
Henri, became a renowned mathe-
matician; another, a physicist, was
arrested by the Germans in 1942
and executed 15 months later.

Theorem 6.10.2 is probably the
best tool mathematicians have for
deducing global properties from
local properties. It is a wonderful
theorem.

It is often called the general-
ized Stokes’s theorem, to distin-
guish it from the special case (sur-
faces in R3) also known as Stokes’s
theorem. Special cases of the gen-
eralized Stokes’s theorem are dis-
cussed in section 6.11.

To lighten notation, in theo-

rem 6.10.2 we write ∂X. How-

ever, we are actually integrating

ϕ over ∂sMX, the smooth part of

the boundary that sets off X ⊂M
from M .

Recall the fundamental theorem of calculus:

inTheorem 6.10.1 (Fundamental theorem of calculus). If f is a C1

function on a neighborhood of [a, b], then∫ b

a

f ′(t) dt = f(b)− f(a). 6.10.1

Restate this as ∫
[a,b]

df =
∫
∂[a,b]

f, 6.10.2

i.e., the integral of df over an oriented interval is equal to the integral of
f over the oriented boundary of the interval. In this form, the statement
generalizes to higher dimensions:

inTheorem 6.10.2 (Generalized Stokes’s theorem). Let X be a

compact piece-with-boundary of a (k+ 1)-dimensional oriented manifold

M ⊂ Rn. Give the boundary ∂X of X the boundary orientation, and let

ϕ be a k-form defined on an open set containing X. Then∫
∂X

ϕ =
∫
X

dϕ. 6.10.3

This beautiful, short statement is the main result of the theory of forms.
Note that the dimensions in equation 6.10.3 make sense: if X is (k + 1)-
dimensional, ∂X is k-dimensional, and if ϕ is a k form, dϕ is a (k+1)-form,
so dϕ can be integrated over X, and ϕ can be integrated over ∂X.

Example 6.10.3 (Integrating over the boundary of a square). You
apply Stokes’s theorem every time you use antiderivatives to compute an
integral: to compute the integral of the 1-form f dx over the oriented line
segment [a, b], you begin by finding a function g such that dg = f dx, and
then say ∫ b

a

f dx =
∫

[a,b]

dg =
∫
∂[a,b]

g = g(b)− g(a). 6.10.4

This isn’t quite the way Stokes’s theorem is usually used in higher di-
mensions, where “looking for antiderivatives” has a different flavor.
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For instance, to compute the integral
∫
C
x dy − y dx, where C is the

boundary of the square S described by the inequalities |x|, |y| ≤ 1, with
the boundary orientation, one possibility is to parametrize the four sides
of the square (being careful to get the orientations right), then to integrate
x dy − y dx over all four sides and add. Another possibility is to apply
Stokes’s theorem:

The square S has sidelength 2,
so its area is 4.

∫
C

x dy − y dx =
∫
S

d(x dy − y dx) =
∫
S

2 dx ∧ dy =
∫
S

2|dx dy| = 8. 4
6.10.5

What is the integral over C of x dy + y dx? Check below.22

Example 6.10.4 (Integrating over the boundary of a cube). Let us
integrate the 2-form

ϕ = (x− y2 + z3) (dy ∧ dz + dx ∧ dz + dx ∧ dy) 6.10.6

over the boundary of the cube Ca given by 0 ≤ x, y, z ≤ a.

Example 6.10.5: Computing
this exterior derivative is less
daunting if you are alert for terms
that can be discarded. Denote

(x1 − x2
2 + x3

3 − · · · ± xnn)

by f . Then

D1f = dx1,

D2f = −2x2 dx2,

D3f = 3x2
3 dx3

and so on, ending with

±nxn−1
n dxn.

For D1f , the only term of

n∑
i=1

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

that survives is that in which
i = 1, giving

dx1 ∧ dx2 ∧ · · · ∧ dxn.

For D2f , the only term of the
sum that survives is dx1 ∧ dx3 ∧
· · · ∧ dxn, giving

−2x2 dx2 ∧ dx1 ∧ dx3 ∧ · · · ∧ dxn;

when the order is corrected this
gives

2x2 dx1 ∧ dx2 ∧ · · · ∧ dxn.
In the end, all the terms are fol-
lowed simply by dx1 ∧ · · · ∧ dxn,
and any minus signs have become
plus.

It is quite possible to do this directly, parametrizing all six faces of the
cube, but Stokes’s theorem simplifies things substantially.

Computing the exterior derivative of ϕ gives

dϕ = dx ∧ dy ∧ dz − 2y dy ∧ dx ∧ dz + 3z2 dz ∧ dx ∧ dy
= (1 + 2y + 3z2) dx ∧ dy ∧ dz,

6.10.7

so we have∫
∂Ca

ϕ =
∫
Ca

(1 + 2y + 3z2) dx ∧ dy ∧ dz

=
∫ a

0

∫ a

0

∫ a

0

(1 + 2y + 3z2) dx dy dz

= a2
(
[x]a0 + [y2]a0 + [z3]a0

)
= a2

(
a+ a2 + a3

)
. 4

6.10.8

Example 6.10.5 (Stokes’s theorem: a harder example). Now let’s
try something similar but harder, integrating

ϕ = (x1 − x2
2 + x3

3 − · · · ± xnn)

(
n∑
i=1

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn
)

6.10.9

over the boundary of the n-dimensional cube Ca given by 0 ≤ xj ≤ a, for
j = 1, . . . , n.

This time, the idea of computing the integral directly is pretty awesome:
parametrizing all 2n faces of the cube, etc. Doing it using Stokes’s theorem
is also pretty awesome, but much more manageable. We know how to
compute dϕ, and it comes out to

dϕ = (1 + 2x2 + 3x2
3 + · · ·+ nxn−1

n )︸ ︷︷ ︸∑n
j=1 jx

j−1
j

dx1 ∧ · · · ∧ dxn, 6.10.10

22d(x dy + y dx) = dx ∧ dy + dy ∧ dx = 0, so the integral is 0.


