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Forms and vector calculus

Gradient a 1-form? How so? Hasn’t one always known the gradient
as a vector? Yes, indeed, but only because one was not familiar with
the more appropriate 1-form concept.—C. Misner, K. S. Thorne, J.
Wheeler, Gravitation

6.0 Introduction

What really makes calculus work is the fundamental theorem of calculus:
that differentiation, having to do with speeds, and integration, having to
do with areas, are somehow inverse operations.

In one variable calculus, the
standard integrand f(x) dx takes a
piece [xi, xi+1] of the domain and
returns the number

f(xi)(xi+1 − xi) :

the area of a rectangle with height
f(xi) and width xi+1 − xi. Note
that dx returns xi+1 − xi, not
|xi+1−xi|; this accounts for equa-
tion 6.0.1.

In chapter 4 we studied the in-
tegrand |dnx|, which takes a (flat)
subset A ⊂ Rn and returns its
n-dimensional volume. In chap-
ter 5 we showed how to integrate
|dkx| over a (curvy) k-dimensional
manifold in Rn to determine its
k-dimensional volume. Such inte-
grands require no mention of the
orientation of the piece.

Differential forms are a spe-
cial case of tensors. A tensor on
a manifold is “anything you can
build out of tangent vectors and
duals of tangent vectors”: a vec-
tor field is a tensor, as is a qua-
dratic form on tangent vectors.
Although tensor calculus is a pow-
erful tool, especially in computa-
tions, we find that speaking of ten-
sors tends to hide the nature of the
objects under consideration.

We want to generalize the fundamental theorem of calculus to higher
dimensions. Unfortunately, we cannot do so with the techniques of chapters
4 and 5, where we integrated using |dnx|. The reason is that |dnx| always
returns a positive number; it does not concern itself with the orientation
of the subset over which it is integrating, unlike the dx of one-dimensional
calculus, which does: ∫ b

a

f(x) dx = −
∫ a

b

f(x) dx. 6.0.1

The cancellations due to opposite orientations make possible the funda-
mental theorem of calculus. Thus to get a fundamental theorem of calculus
in higher dimensions, we need to define orientation in higher dimensions,
and we need an integrand that gives one number when integrating over a
domain with one orientation, and the opposite number when integrating
over a domain with the opposite orientation.

It follows that orientation in higher dimensions must be defined in such a
way that choosing an orientation is always a choice between one orientation
and its opposite. It is fairly clear that you can orient a curve by drawing
an arrow on it; orientation then means, what direction are you going along
the curve, with the arrow or against it? For a surface in R3, an orientation
is a specification of a direction in which to go through the surface, such as
crossing a sphere “from the inside to the outside” or “from the outside to
the inside.” These two notions of orientation, for a curve and for a surface,
seem quite different, but using a function called a form, we will be able to
provide a single definition of orientation that covers both these cases and all
others as well (including 0-manifolds, or points, which in other approaches
to orientation are sometimes left out).

Once we have determined how to orient our objects, we must choose
our integrands: the mathematical creature that assigns a little number to
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a little piece of the domain. If we were willing to restrict ourselves to R2

and R3, we could use the techniques of vector calculus. Instead we will
again use forms (also known as differential forms). Because forms work
in any dimension, they are the natural way to approach two towering sub-
jects that are inherently four-dimensional: electromagnetism (the subject
of section 6.9) and the theory of relativity. Forms also make possible a
unified treatment of differentiation and of the fundamental theorem of cal-
culus: one operator (the exterior derivative) works in all dimensions, and
one short, elegant statement (the generalized Stokes’s theorem) general-
izes the fundamental theorem of calculus to all dimensions. In contrast,
vector calculus requires special formulas, operators, and theorems for each
dimension where it works.

You have been using forms
without realizing it. When you
write d(t2) = 2t dt you are saying
something about the 1-form dt.

Our treatment of forms, espe-
cially the exterior derivative, was
influenced by the book Mathemat-
ical Methods of Classical Mechan-
ics, by Vladimir Arnold (Springer-
Verlag, 1978).

x

y

Figure 6.0.1.

The radial vector field

~F

(
x
y

)
=

[
x
y

]
.

On the other hand, the language of vector calculus is used in many sci-
ence courses, particularly at the undergraduate level. If you are studying
physics, you definitely need to know vector calculus. In addition, the func-
tions and vector fields of vector calculus are more intuitive than forms. A
vector field is an object that one can picture, as in figure 6.0.1. Coming to
terms with forms requires more effort. We can’t draw you a picture of a
form. A k-form is, as we shall see, something like the determinant: it takes
k vectors, fiddles with them until it has a square matrix, and then takes its
determinant.

For these two reasons we have devoted three sections to translating be-
tween forms and vector calculus: section 6.5 relates forms on R3 to functions
and vector fields; section 6.8 shows that the exterior derivative we define
using forms has three separate incarnations in the language of vector cal-
culus, and section 6.11 shows how Stokes’s theorem, a single statement in
the language of forms, becomes four more complicated statements in the
language of vector calculus.

We begin by introducing forms; we will then see (section 6.2) how to
integrate forms over parametrized domains (domains that come with an
inherent orientation), before tackling the issue of orientation in sections 6.3
and 6.4.

6.1 Forms on Rn

The important difference be-
tween determinants and k-forms is
that a k-form on Rn is a function
of k vectors, while the determinant
on Rn is a function of n vectors;
determinants are only defined for
square matrices.

In section 4.8 we saw that the determinant is the unique antisymmetric
and multilinear function of n vectors in Rn that gives 1 if evaluated on the
standard basis vectors. Because of the connection between the determinant
and volume described in section 4.9, the determinant is fundamental to
changes of variables in multiple integrals, as we saw in section 4.10.

Here we will study the multilinear antisymmetric functions of k vectors
in Rn, where k ≥ 0 may be any integer, though we will see that the only
interesting case is when k ≤ n. Again there is a close relation to volumes;
these objects, called forms, are the right integrands for integrating over
oriented domains.
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inDefinition 6.1.1 (k-form on Rn). A k-form on Rn is a function ϕ

that takes k vectors in Rn and returns a number ϕ(~v1, . . . , ~vk), such that
ϕ is multilinear and antisymmetric as a function of the vectors.

The number k is called the degree of the form.
“Antisymmetric” and “alter-

nating” are synonymous.

Antisymmetry
If you exchange any two of the

arguments of ϕ, you change the
sign of ϕ:

ϕ (~v1, . . . , ~vi, . . . , ~vj , . . . , ~vk)

=− ϕ(~v1, . . . , ~vj , . . . , ~vi, . . . , ~vk).

Multilinearity
If ϕ is a k-form and

~vi = a~u + b~w,

then

ϕ
(
~v1, . . . , (a~u + b~w),. . . ,~vk

)
=

aϕ(~v1,. . . ,~vi−1, ~u, ~vi+1,. . . ,~vk)+

bϕ(~v1,. . . , ~vi−1, ~w, ~vi+1,. . . , ~vk).

The next example is the fundamental example.

Example 6.1.2 (k-form). Let i1, . . . , ik be any k integers between 1 and
n. Then dxi1 ∧ · · · ∧dxik is that function of k vectors ~v1, . . . , ~vk in Rn that
puts these vectors side by side, making the n× k matrix v1,1 . . . v1,k

... . . .
...

vn,1 . . . vn,k

 6.1.1

and selects k rows: first row i1, then row i2, etc., and finally row ik, making
a square k × k matrix, and finally takes its determinant. For instance,

dx1 ∧ dx2︸ ︷︷ ︸
2-form




1
2
−1

1

 ,


3
−2

1
2


 = det

[
1 3
2 −2

]
︸ ︷︷ ︸

1st and 2nd rows
of original matrix

= −8. 6.1.2

dx1 ∧ dx2 ∧ dx4︸ ︷︷ ︸
3-form




1
2
−1

1

 ,


3
−2

1
2

 ,


0
1
2
1


 =det

 1 3 0
2 −2 1
1 2 1

= −7

dx2 ∧ dx1 ∧ dx4︸ ︷︷ ︸
3-form




1
2
−1

1

 ,


3
−2

1
2

 ,


0
1
2
1


 =det

 2 −2 1
1 3 0
1 2 1

= 7 4 6.1.3

Note (equation 6.1.3) that to
give an example of a 3-form we
had to add a third vector. You
cannot evaluate a 3-form on two
vectors (or on four); a k-form is a
function of k vectors. But you can
evaluate a 2-form on two vectors in
R4 (as we did in equation 6.1.2) or
in R16. This is not the case for the
determinant, which is a function of
n vectors in Rn.

Example 6.1.3 (0-form). Definition 6.1.1 makes sense even if k=0: a
0-form on Rn takes no vectors and returns a number. In other word, it is
that number. 4
Remarks. 1. For now think of a form like dx1∧dx2 or dx1∧dx2∧dx4 as a
single item, without worrying about the component parts. The reason for
the wedge ∧ will be explained at the end of this section, where we discuss
the wedge product; we will see that the use of ∧ in the wedge product is
consistent with its use here. In section 6.8 we will see that the use of d in
our notation here is consistent with its use to denote the exterior derivative.

2. The integrand |dkx| of chapter 5 also takes k vectors in Rn and gives
a number:

|dkx|(~v1, . . . , ~vk) =
√

det
(

[~v1, . . . , ~vk]>[~v1, . . . , ~vk]
)
. 6.1.4

But these integrands are neither multilinear nor antisymmetric. 4
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Note there are no nonzero k-forms on Rn when k > n. If ~v1, . . . , ~vk are
vectors in Rn and k > n, then the vectors are not linearly independent, and
at least one of them is a linear combination of the others, say

~vk =
k−1∑
i=1

ai~vi. 6.1.5

Then if ϕ is a k-form on Rn, evaluation on ~v1, . . . , ~vk gives

ϕ(~v1, . . . , ~vk) = ϕ(~v1, . . . ,
k−1∑
i=1

ai~vi) =
k−1∑
i=1

aiϕ(~v1, . . . , ~vk−1, ~vi). 6.1.6

The first term of the sum at right is a1φ(~v1, . . . , ~vk−1, ~v1), the second is
a2φ(~v1, ~v2, . . . , ~vk−1, ~v2), and so on; each term evaluates ϕ on k vectors,
two of which are equal, and so (by antisymmetry) the k-form returns 0.

Geometric meaning of k-forms

Evaluating the 2-form dx1 ∧ dx2 on the vectors ~a and ~b, we have

dx1 ∧ dx2

 a1

a2

a3

 ,
 b1b2
b3

 = det
[
a1 b1
a2 b2

]
= a1b2 − a2b1. 6.1.7

Rather than imagining project-
ing ~a and ~b onto the plane to get
the vectors of equation 6.1.8, we
could imagine projecting the par-
allelogram spanned by ~a and ~b
onto the plane to get the parallel-
ogram spanned by the vectors of
equation 6.1.8.

If we project ~a and ~b onto the (x1, x2)-plane, we get the vectors[
a1

a2

]
and

[
b1
b2

]
; 6.1.8

the determinant in equation 6.1.7 gives the signed area of the paral-
lelogram that they span.

Thus dx1∧dx2 deserves to be called the (x1, x2)-component of signed
area. Similarly, dx2 ∧ dx3 and dx1 ∧ dx3 deserve to be called the
(x2, x3)- and (x1, x3)-components of signed area.

We can now interpret equations 6.1.2 and 6.1.3 geometrically. The 2-
form dx1 ∧ dx2 tells us that the (x1, x2)-component of signed area of the
parallelogram spanned by the two vectors in equation 6.1.2 is −8. The
3-form dx1 ∧ dx2 ∧ dx4 tells us that the (x1, x2, x4)-component of signed
volume of the parallelepiped spanned by the three vectors in equation 6.1.3
is −7.

Similarly, the 1-form dx gives the x-component of signed length of a
vector, while dy gives its y-component:

dx

 2
−3

1

 = det 2 = 2 and dy

 2
−3

1

 = det(−3) = −3. 6.1.9


