Exercise 5.2.4, ¢, part iii is
much harder than the others; even
after finding an equation for the
curve bounding the parametrizing
region, you may need a computer
to visualize it.
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c. Parametrize the part of S where
i. 2> 0; ii. x>0, y> 0 iii. 2 >z +y.

*5.2.5  Consider the open subset of R constructed in example 4.4.3: list the
rationals between 0 and 1, say a1, a2, as, ..., and take the union

1
U= U(a 21+kvaz+ﬁ>

for some integer k > 2. Show that U is a one-dimensional manifold and that it
can be parametrized according to definition 5.2.3.

5.3 COMPUTING VOLUMES OF MANIFOLDS

In equation 5.3.3,

Py (D1y(), ..., Dey(w))

is the k-parallelogram anchored at
~v(u) and spanned by the partial
derivatives

Diy(u),..., Dyy(u);

|d"x| of this parallelogram is the
volume of the parallelogram (see
proposition 5.1.1).

The k-dimensional volume of a k-dimensional manifold M embedded in any
R™ is given by

voly M = / |d¥x|, 5.3.1
M

where |d*x| is the integrand that takes a k-parallelogram and returns its k-
dimensional volume. Thus the length of a curve C' can be written [, |d'x]|,
and the area of a surface S can be written [q[d®x|. Heuristically, this
integral is defined by cutting up the manifold into little anchored k-parallel-
ograms, adding their k-dimensional volumes and taking the limits of the
sums as the decomposition becomes infinitely fine.

We know how to compute |d*x| of a k-parallelogram: if T =
then

|d¥x| Py (V1 . . .,

[Vi, .oy Vi,

\_7'19) = voly, Px(\_ﬂ, .o, Vi) = 4/ det (TTT). 5.3.2
To compute the volume of a k-manifold M, we parametrize M by a mapping
~v and then compute the volume of the k-parallelograms spanned by the
partial derivatives of v, sum them, and take the limit as the decomposition

becomes infinitely fine. This gives the following definition.
Definition 5.3.1 (Volume of manifold). Let M C R™ be a smooth
k-dimensional manifold, U a pavable subset of R*¥, and v : U — M

a parametrization according to definition 5.2.3. Let X be as in that
definition. Then

vol, M = / |d*x|
Y(U—=X)

= [ (1 o (D23
/UX\/det [Dy(u

s Dy (w))) ld*ul

| Dy (w)]) |d"ul. 5.3.3



In definitions 5.3.1 and 5.3.2 we
integrate over U — X, not U, be-
cause v may not be differentiable
on X. But X has k-dimensional
volume 0, so this doesn’t affect the
integral.

Definition 5.3.2: Such an inte-
gral is sometimes referred to as the
integral of a density, as opposed to
the integral of a differential form.

FIGURE 5.3.1.
A surface approximated by par-

allelograms. The point xo corre-

sponds to y(u), and the vectors Vi

and V2 correspond to the vectors
1

— 1 —
2ND1'y(u) and Q—NDz'y(u).

532 Chapter 5. Volumes of manifolds

Remark. When the manifold is a curve parametrized by v : [a,b] — C,
equation 5.3.3 can be written

b
/C d'x] = /[ VAU 0w el = / FOldt, 534

which is compatible with definition 3.8.5 of arc length. A

Definition 5.3.1 is a special case of the following:

Definition 5.3.2 (Integral over a manifold with respect to vol-
ume). Let M C R™ be a smooth k-dimensional manifold, U a pavable
subset of RF, and v : U — M a parametrization, and let X be as in
definition 5.2.3. Then f : M — R is integrable over M with respect
to volume if the integral on the right of equation 5.3.5 exists, and the
integral is

/M f(x)|d"x| = /U » f('y(u))\/det([Dv(u)]T[Dv(u)]) |d*u]. 5.3.5

Let us see why definition 5.3.2 should be right. To simplify the discus-
sion, let us consider the area of a surface parametrized by v : U — R3.
This area should be

lim 5.3.6

N—o0

Z Area of v(C' NU).
CeDn(R?)

That is, we make a dyadic decomposition of R? and see how + maps to S
the dyadic squares C' that are in U or straddle it. We then sum the areas
of the resulting regions v(C' NU). For C C U, this is the same as v(C); for
C that straddle U, we add to the sum the area of the part of C' that is in
U.

The side length of a square C is 1/2V, so at least when C C U, the set
~v(C NU) is, as shown in figure 5.3.1, approximately the parallelogram

1 — 1 —
P’y(u)(2_ND1'7(u)7 Q_NDQPY(H))7 5.3.7
where u is the lower left corner of C.
That parallelogram has area
1
= \/det[Dy(w)] T [D(w)] 5.3.8

So it seems reasonable to expect that the error we make by replacing

Area of v(CNU) by voly(C) \/det[D'y(u)]T[D'y(u)] 5.3.9



