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c. Parametrize the part of S where
Exercise 5.2.4, c, part iii is

much harder than the others; even
after finding an equation for the
curve bounding the parametrizing
region, you may need a computer
to visualize it.

i. z > 0; ii. x > 0, y > 0; iii. z > x+ y.

*5.2.5 Consider the open subset of R constructed in example 4.4.3: list the
rationals between 0 and 1, say a1, a2, a3, . . . , and take the union

U =
∞⋃
i=1

(
ai −

1

2i+k
, ai +

1

2i+k

)
for some integer k > 2. Show that U is a one-dimensional manifold and that it
can be parametrized according to definition 5.2.3.

5.3 Computing volumes of manifolds

The k-dimensional volume of a k-dimensional manifold M embedded in any
Rn is given by

volkM =
∫
M

|dkx|, 5.3.1

where |dkx| is the integrand that takes a k-parallelogram and returns its k-
dimensional volume. Thus the length of a curve C can be written

∫
C
|d1x|,

and the area of a surface S can be written
∫
S
|d2x|. Heuristically, this

integral is defined by cutting up the manifold into little anchored k-parallel-
ograms, adding their k-dimensional volumes and taking the limits of the
sums as the decomposition becomes infinitely fine.

We know how to compute |dkx| of a k-parallelogram: if T = [~v1, . . . , ~vk],
then

|dkx|Px(~v1, . . . , ~vk) = volk Px(~v1, . . . , ~vk) =
√

det (T>T ). 5.3.2

To compute the volume of a k-manifold M , we parametrize M by a mapping
γ and then compute the volume of the k-parallelograms spanned by the
partial derivatives of γ, sum them, and take the limit as the decomposition
becomes infinitely fine. This gives the following definition.

In equation 5.3.3,

Pγ(u)

( −→
D1γ(u), . . . ,

−→
Dkγ(u)

)
is the k-parallelogram anchored at
γ(u) and spanned by the partial
derivatives

−→
D1γ(u), . . . ,

−→
Dkγ(u);

|dkx| of this parallelogram is the
volume of the parallelogram (see
proposition 5.1.1).

inDefinition 5.3.1 (Volume of manifold). Let M ⊂ Rn be a smooth
k-dimensional manifold, U a pavable subset of Rk, and γ : U → M

a parametrization according to definition 5.2.3. Let X be as in that
definition. Then

volkM =
∫
γ(U−X)

|dkx|

=
∫
U−X

(
|dkx|

(
Pγ(u)

( −→
D1γ(u), . . . ,

−→
Dkγ(u)

)))
|dku|

=
∫
U−X

√
det([Dγ(u)]>[Dγ(u)]) |dku|. 5.3.3



532 Chapter 5. Volumes of manifolds

Remark. When the manifold is a curve parametrized by γ : [a, b] → C,
equation 5.3.3 can be written

In definitions 5.3.1 and 5.3.2 we
integrate over U − X, not U , be-
cause γ may not be differentiable
on X. But X has k-dimensional
volume 0, so this doesn’t affect the
integral.

Definition 5.3.2: Such an inte-
gral is sometimes referred to as the
integral of a density , as opposed to
the integral of a differential form.

∫
C

|d1x| =
∫

[a,b]

√
det(~γ′(t) · ~γ′(t)) |dt| =

∫ b

a

|~γ′(t)| dt, 5.3.4

which is compatible with definition 3.8.5 of arc length. 4

Definition 5.3.1 is a special case of the following:

inDefinition 5.3.2 (Integral over a manifold with respect to vol-
ume). Let M ⊂ Rn be a smooth k-dimensional manifold, U a pavable
subset of Rk, and γ : U → M a parametrization, and let X be as in
definition 5.2.3. Then f : M → R is integrable over M with respect
to volume if the integral on the right of equation 5.3.5 exists, and the
integral is∫

M

f(x)|dkx| =
∫
U−X

f
(
γ(u)

)√
det([Dγ(u)]>[Dγ(u)]) |dku|. 5.3.5

Let us see why definition 5.3.2 should be right. To simplify the discus-
sion, let us consider the area of a surface parametrized by γ : U → R3.
This area should be

x0 v1

v2

Figure 5.3.1.
A surface approximated by par-

allelograms. The point x0 corre-
sponds to γ(u), and the vectors ~v1

and ~v2 correspond to the vectors

1

2N

−→
D1γ(u) and

1

2N

−→
D2γ(u).

lim
N→∞

∑
C∈DN (R2)

Area of γ(C ∩ U). 5.3.6

That is, we make a dyadic decomposition of R2 and see how γ maps to S
the dyadic squares C that are in U or straddle it. We then sum the areas
of the resulting regions γ(C ∩U). For C ⊂ U , this is the same as γ(C); for
C that straddle U , we add to the sum the area of the part of C that is in
U .

The side length of a square C is 1/2N , so at least when C ⊂ U , the set
γ(C ∩ U) is, as shown in figure 5.3.1, approximately the parallelogram

Pγ(u)

( 1
2N

−→
D1γ(u),

1
2N

−→
D2γ(u)

)
, 5.3.7

where u is the lower left corner of C.
That parallelogram has area

1
22N

√
det[Dγ(u)]>[Dγ(u)]. 5.3.8

So it seems reasonable to expect that the error we make by replacing

Area of γ(C ∩ U) by vol2(C)
√

det[Dγ(u)]>[Dγ(u)] 5.3.9


