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Volumes of manifolds

5.0 Introduction

In chapter 4 we saw how to integrate over subsets of Rn, first using dyadic
pavings, then more general pavings. But these subsets were flat n-dimen-
sional subsets of Rn. What if we want to integrate over a (curvy) surface
in R3?

When we say that in chapter 4
we had “flat domains” we mean we
had n-dimensional subsets of Rn.
A disc in the plane is flat, even
though its boundary is a circle:
we cannot bend a disc and have
it remain a subset of the plane. A
subset of R is necessarily straight;
if we want a wiggly line we must
allow for at least two dimensions.

There is quite a bit of leeway
when choosing what kind of “lit-
tle pieces” to use; choosing a de-
composition of a surface into lit-
tle pieces is analogous to choosing
a paving, and as we saw in sec-
tion 4.7, there are many possible
choices besides the dyadic paving.

In chapter 6 we will study a
different kind of integrand, which
assigns numbers to oriented mani-
folds.

Many situations of obvious interest, like the area of a surface, or the
total energy stored in the surface tension of a soap bubble, or the amount
of fluid flowing through a pipe, are clearly some sort of surface integral. In
a physics course, for example, you may have learned that the electric flux
through a closed surface is proportional to the electric charge inside that
surface.

In this chapter we will show how to compute the volume of a surface in
R3, or more generally, a k-manifold in Rn, where k < n. A first thing to
realize is that we can’t use the approach given in section 4.1, where we saw
that when integrating over a subset A ⊂ Rn,∫

A

g(x) |dnx| =
∫
Rn
g(x)1A(x) |dnx|. (4.1.8)

If we try to use this equation to integrate a function in R3 over a surface,
the integral will certainly vanish, since the surface has three-dimensional
volume 0. For any k-manifold M embedded in Rn, with k < n, the integral
would certainly vanish, since M has n-dimensional volume 0. Instead, we
need to rethink the whole process of integration.

At heart, integration is always the same:

Break up the domain into little pieces, assign a little number to each
little piece, and finally add together all the numbers. Then break
the domain into littler pieces and repeat, taking the limit as the
decomposition becomes infinitely fine. The integrand is the thing
that assigns the number to the little piece of the domain.

The words “little piece” in this heuristic description need to be pinned
down before we can do anything useful. We will chose to break the domain
into k-dimensional parallelograms, and the “little number” we attach to
each little parallelogram will be its k-dimensional volume. In section 5.1
we will see how to compute this volume.

We can only integrate over parametrized domains, and if we use the
definition of parametrizations given in chapter 3, we will not be able to
parametrize even such simple objects as the circle. Section 5.2 gives a
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looser definition of parametrization, sufficient for integration. In section 5.3
we compute volumes of k-manifolds; in section 5.4 we give an alternative
description of curvature, in terms of the image of the Gauss map. Fractals
and fractional dimension are discussed in section 5.5.

5.1 Parallelograms and their volumes

We saw in section 4.9 that the volume of a k-parallelogram in Rk is

volk P (~v1, . . . , ~vk) = |det[~v1, . . . , ~vk]|. 5.1.1

What about a k-parallelogram in Rn? Clearly if we draw a parallelogram
on a rigid piece of cardboard, cut it out, and move it about in space,
its area will not change. This area should depend only on the lengths of
the vectors spanning the parallelogram and the angle between them; it
should not depend on where they are placed in R3. But it isn’t obvious
how to compute this volume. Clearly equation 5.1.1 cannot be applied,
as the determinant only exists for square matrices. A special formula (see
proposition 1.4.19) exists for a 2-parallelogram in R3, but that formula is
quite messy and requires the cross product. How will we compute the area
of a 2-parallelogram in R4, where the cross product does not exist, never
mind a 3-parallelogram in R5?

The following proposition is the key. It concerns k-parallelograms in Rk,
but we will be able to apply it to k-parallelograms in Rn.

inProposition 5.1.1 (Volume of a k-parallelogram in Rk). Let
~v1, . . . , ~vk be k vectors in Rk, so that T = [~v1, . . . , ~vk] is a square k × k
matrix. Then

volk P (~v1, . . . , ~vk) =
√

det(T>T ). 5.1.2
Proof of proposition 5.1.1: Re-

call that if A and B are n×n ma-
trices, then

det A det B = det(AB)

det A = det A>

(Theorems 4.8.4 and 4.8.7).

Recall (definition 1.4.6) that

~x · ~y = |~x| |~y| cosα,

where α is the angle between the
vectors ~x and ~y.

Proof.
√

det(T>T ) =
√

(detT>)(detT ) =
√

(detT )2 = |detT | ¤

Example 5.1.2 (Volume of two-dimensional and three-dimensional
parallelograms). When k = 2, we have

det(T>T ) = det
([

~v>1
~v>2

] [
~v1 ~v2

])
= det

[
|~v1|2 ~v1 · ~v2

~v2 · ~v1 |~v2|2
]

= |~v1|2|~v2|2 − (~v1 · ~v2)2.

5.1.3

If we write ~v1 ·~v2 = |~v1||~v2| cos θ (where θ is the angle between ~v1 and ~v2),
this becomes

det(T>T ) = |~v1|2|~v2|2(1− cos2 θ) = |~v1|2|~v2|2 sin2 θ. 5.1.4

Thus proposition 5.1.1 asserts that the area of the 2-parallelogram spanned
by ~v1, ~v2 is √

det(T>T ) = |~v1||~v2|| sin θ|, 5.1.5
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which agrees with the formula of height times base given in high school: if
~v2 is the base, then the height is ~v1 sin θ.

Exactly the same computation in the case k = 3 leads to a much less
familiar formula. Suppose T = [~v1, ~v2, ~v3], and that the angle between ~v2

and ~v3 is θ1, the angle between ~v1 and ~v3 is θ2, and the angle between ~v1

and ~v2 is θ3. Then

T>T =

 |~v1|2 ~v1 · ~v2 ~v1 · ~v3

~v2 · ~v1 |~v2|2 ~v2 · ~v3

~v3 · ~v1 ~v3 · ~v2 |~v3|2

 5.1.6

and detT>T is given by

|~v1|2|~v2|2|~v3|2 + 2(~v1 · ~v2)(~v2 · ~v3)(~v1 · ~v3) 5.1.7

− |~v1|2(~v2 · ~v3)2 − |~v2|2(~v1 · ~v3)2 − |~v3|2(~v1 · ~v2)2

= |~v1|2|~v2|2|~v3|2
(
1 + 2 cos θ1 cos θ2 cos θ3 − (cos2 θ1 + cos2 θ2 + cos2 θ3)

)
.

For instance, the volume of a parallelepiped spanned by three unit vec-
tors, each making an angle of π/4 with the others, is√

1 + 2 cos3
π

4
− 3 cos2

π

4
=

√√
2− 1
2

. 5.1.8

Note that we couldn’t compute this volume using equation 5.1.1: to com-
pute |det[~v1, . . . , ~vk]|, we would need to know the entries of the vectors
~v1, ~v2, ~v3. 4

Volume of a k-parallelogram in Rn

The formula volk P (~v1, . . . , ~vk) =
√

det(T>T ) was useful in equation 5.1.8.
But what really makes proposition 5.1.1 interesting is that the same formula
can be used to compute the area of a k-parallelogram in Rn.

Note that if T is an n×k matrix whose columns are ~v1, . . . , ~vk, then the
product T>T is a k × k matrix whose entries are all dot products of the
vectors ~vi:

T︷ ︸︸ ︷
...

... · · ·
...

~v1 ~v2 . . . ~vk
...

... · · ·
...



. . . ~v>1 . . .
. . . ~v>2 . . .
. . . . . . . . .
. . . ~v>k . . .


︸ ︷︷ ︸

T>


|~v1|2 ~v1 · ~v2 . . . ~v1 · ~vk
~v2 · ~v1 |~v2|2 . . . ~v2 · ~vk

...
...

. . . . . .
~vk · ~v1 ~vk · ~v2 . . . |~vk|2

 .
︸ ︷︷ ︸

T>T

5.1.9

This matrix T>T is identical to the matrix T>T of equation 5.1.9: its
entries can be computed from the lengths of the k vectors and the angles
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between them. No further information is needed. In particular, we do not
need to know where the vectors are: at what point the parallelogram is
anchored.

Thus we can use
√

det (T>T ) to define k-dimensional volume in Rn.

inDefinition 5.1.3 (Volume of a k-parallelogram in Rn). Let the k
vectors ~v1, . . . , ~vk be in Rn, and let T be the n × k matrix with these
vectors as its columns: T = [~v1, . . . , ~vk]. Then the k-dimensional volume
of P (~v1, . . . , ~vk) is

volk P (~v1, . . . , ~vk) =
√

det (T>T ). 5.1.10
Exercise 5.1.3 asks you to show

that if ~v1, . . . , ~vk are linearly de-
pendent, volk(P (~v1, . . . , ~vk)) = 0.
In particular, this shows that if
k > n, volk(P (~v1, . . . , ~vk)) = 0. Exercise 5.1.5 asks you to show that det(T>T ) ≥ 0, so that definition

5.1.3 makes sense.

Example 5.1.4 (Volume of a 3-parallelogram in R4). What is the 3-

dimensional volume of the 3-parallelogram P in R4 spanned by ~v1 =


1
0
0
1

,

~v2 =


0
1
0
1

, ~v3 =


0
0
1
1

? Set T = [~v1, ~v2, ~v3]; then

T>T =

 2 1 1
1 2 1
1 1 2

 and det(T>T ) = 4, so vol3 P = 2. 4

Volume of anchored k-parallelograms

To break up a domain into little k-parallelograms we will need paral-
lelograms “anchored” at different points in the domain. We denote by
Px(~v1, . . . , ~vk) a k-parallelogram in Rn anchored at x ∈ Rn: the k vec-
tors spanning the parallelogram all begin at x. It is intuitively clear (and
justified by proposition 4.1.21) that the vectors can be anchored at the
origin or at any other point x ∈ Rn without changing the volume of the
parallelogram they span:The anchored k-parallelograms

are the “little pieces” we will use
when breaking up the domain.

The “little number” assigned to
each piece will be its volume.

volk P (~v1, . . . , ~vk) = volk Px(~v1, . . . , ~vk). 5.1.11

The need for parametrizations

Now we must address a more complex issue. The first step in integration
is to “break up the domain into little pieces.” In chapter 4 we had flat
domains. Now we must break up a curvy domain into flat k-parallelograms.

For a curve, this is not hard. If C ⊂ Rn is a smooth curve, the integral∫
C
|d1x| is the number obtained by the following process: approximate C


