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Solving equations

In 1985, John Hubbard was asked to testify before the Committee on
Science and Technology of the U.S. House of Representatives. He was
preceded by a chemist from DuPont, who spoke of modeling molecules,
and by an official from the geophysics institute of California, who
spoke of exploring for oil and attempting to predict tsunamis.
When it was his turn, he explained that when chemists model mole-
cules, they are solving Schrödinger’s equation, that exploring for oil
requires solving the Gelfand-Levitan equation, and that predicting
tsunamis means solving the Navier-Stokes equation. Astounded, the
chairman of the committee interrupted him and turned to the pre-
vious speakers. “Is that true, what Professor Hubbard says?” he
demanded. “Is it true that what you do is solve equations?”

2.0 Introduction

All readers of this book will have solved systems of simultaneous linear
equations. Such problems arise throughout mathematics and its applica-
tions, so a thorough understanding of the problem is essential.

In every subject, language is in-
timately related to understanding.

“It is impossible to dissociate
language from science or science
from language, because every nat-
ural science always involves three
things: the sequence of phenom-
ena on which the science is based;
the abstract concepts which call
these phenomena to mind; and the
words in which the concepts are
expressed. To call forth a concept,
a word is needed; to portray a
phenomenon, a concept is needed.
All three mirror one and the same
reality.”—Antoine Lavoisier, 1789.

“Professor Hubbard, you al-
ways underestimate the difficulty
of vocabulary.”—Helen Chigirin-
skaya, Cornell University, 1997.

What most students encounter in high school is systems of n equations
in n unknowns, where n might be general or might be restricted to n = 2
and n = 3. Such a system usually has a unique solution, but sometimes
something goes wrong: some equations are “consequences of others,” and
have infinitely many solutions; other systems of equations are “incompati-
ble,” and have no solutions. This chapter is largely concerned with making
these notions systematic.

A language has evolved to deal with these concepts: “linear transfor-
mation,” “linear combination,” “linear independence,” “kernel,” “span,”
“basis,” and “dimension.” These words may sound unfriendly, but they
are actually quite transparent if thought of in terms of linear equations.
They are needed to answer questions like, “How many equations are conse-
quences of the others?” The relationship of these words to linear equations
goes further. Theorems in linear algebra can be proved with abstract in-
duction proofs, but students generally prefer the following method, which
we discuss in this chapter:

Reduce the statement to a statement about linear equations, row re-
duce the resulting matrix, and see whether the statement becomes
obvious.

If so, the statement is true; otherwise it is likely to be false.
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Solving nonlinear equations is much harder. In the days before comput-
ers, finding solutions was virtually impossible; even when mathematicians
could prove that solutions existed, they were usually not concerned with
whether their proof could be turned into a practical algorithm to find them.
Computers have made this approach unreasonable. Knowing that a system
of equations has solutions is no longer enough; we want a practical algo-
rithm that will enable us to solve them. The algorithm most often used is
Newton’s method . In section 2.8 we will show Newton’s method in action
and state Kantorovich’s theorem, which guarantees that under appropri-
ate circumstances Newton’s method converges to a solution; in section 2.9
we discuss the superconvergence of Newton’s method and state a stronger
version of Kantorovich’s theorem.

In sections 2.6 and 2.7 we discuss abstract vector spaces and the change
of basis, in particular the advantages of expressing a linear transformation
in an eigenbasis, when such a basis exists, and how to find it when it does.

In section 2.10 we see under what circumstances a function f : Rn → Rn

has a local inverse function that undoes the transformation given by f .
Given a function f : Rn → Rm, with n > m, we will see under what cir-
cumstances the equation f(x) = 0 locally expresses some variables implicitly
in terms of others.

2.1 The main algorithm: row reduction

Suppose we want to solve the system of linear equations

2x + y + 3z = 1

x − y = 1

2x + z = 1.

2.1.1

We could add together the first and second equations to get 3x + 3z = 2.
Substituting (2−3z)/3 for x in the third equation gives z = 1/3, so x = 1/3;
putting this value for x into the second equation then gives y = −2/3.

In this section we will show how to make this approach systematic, using
row reduction. The big advantage of row reduction is that it requires no
cleverness.

The first step is to write the system of equation 2.1.1 in matrix form.
We can write the coefficients as one matrix, the unknowns as a vector and
the constants on the right as another vector: 2 1 3

1 −1 0
2 0 1


︸ ︷︷ ︸

coefficient matrix (A)

x
y
z


︸ ︷︷ ︸

vector of unknowns (~x)

 1
1
1


︸ ︷︷ ︸

constants (~b)

.

Our system of equations can thus be written as the matrix multiplication
A~x = ~b:
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The matrix A uses position to
impart information, as do Arabic
numbers; in both cases, 0 plays
a crucial role as place holder. In
the number 4 084, the two 4’s have
very different meanings, as do the
1s in the matrix: in the first col-
umn, 1 is the coefficient of x, in
the second column, the 1s are the
coefficients of y, and in the third
column, 1 is the coefficient of z.

Using position to impart infor-
mation allows for concision; in Ro-
man numerals, 4 084 is

MMMMLXXXIIII.
(When we write IV = 4 and VI
= 6 we are using position, but
the Romans themselves were quite
happy writing their numbers in
any order, MMXXM for 3 020, for
example.)

We denote by [A | ~b] the matrix
obtained by putting ~b next to the
columns of A, as in the right side
of equation 2.1.5. The vertical line
is intended to avoid confusion with
multiplication; we are not multi-
plying A and ~b.

The ith column of the matrix A
corresponds to the ith unknown;
the columns of [A | ~b] represent
variables, while the rows represent
equations.

~x︷ ︸︸ ︷x
y
z


 2 1 3

1 −1 0
2 0 1


︸ ︷︷ ︸

A

 1
1
1


︸ ︷︷ ︸

~b

. 2.1.2

We now use a shorthand notation, omitting the vector ~x and writing A and
~b as a single matrix, with ~b the last column of the new matrix:[ 2 1 3

1 −1 0
2 0 1︸ ︷︷ ︸

A

1
1
1︸︷︷︸
~b

]
. 2.1.3

More generally, the system of equations

a1,1x1 + · · ·+ a1,nxn = b1

... · · ·
...

...
... · · ·

...
...

am,1x1 + · · ·+ am,nxn = bm

2.1.4

is the same as A~x = ~b: a1,1 · · · a1,n

...
...

am,1 · · · am,n


 x1

...
xn

=

 b1
...

bm


A~x=~b

, represented by

 a1,1 · · · a1,n b1

... · · ·
...

...
am,1 · · · am,n bm


[A|~b]

.

2.1.5

The first subscript in a pair of
subscripts refers to vertical posi-
tion, and the second to horizontal
position: a1,n is the coefficient for
the top row, nth column: first take
the elevator, then walk down the
hall.

Row operations

We can solve a system of linear equations by row reducing the corresponding
matrix, using row operations.

inDefinition 2.1.1 (Row operations). A row operation on a matrix is
one of three operations:

1. Multiplying a row by a nonzero number

2. Adding a multiple of a row onto another row

3. Exchanging two rows

Exercise 2.1.4 asks you to show that the third operation is not necessary;
one can exchange rows using operations 1 and 2.

Row operations are important for two reasons. First, they require only
arithmetic: addition, subtraction, multiplication, and division. This is what
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computers do well; in some sense it is all they can do. They spend a lot of
time doing it: row operations are fundamental to most other mathematical
algorithms. The other reason is that they enable us to solve systems of
linear equations:

Column operations are defined
by replacing “row” in definition
2.1.1by “column”. We will use
column operations in section 4.8.

Equation 2.1.7: We said not to
worry about how we did this row
reduction . But if you do worry,
here are the steps: To get (1),
divide row 1 by 2, and add −1/2
row 1 to row 2, and subtract row 1
from row 3. To get from (1) to (2),
multiply row 2 by −2/3, and then
add that result to row 3. From
(2) to (3), subtract half of row 2
from row 1. For (4), subtract row
3 from row 1. For (5), subtract
row 3 from row 2.

1.

 1 1/2 3/2 1/2
0 −3/2 −3/2 1/2
0 −1 −2 0



2.

 1 1/2 3/2 1/2
0 1 1 −1/3
0 0 −1 −1/3



3.

 1 0 1 2/3
0 1 1 −1/3
0 0 1 1/3



4.

 1 0 0 1/3
0 1 1 −1/3
0 0 1 1/3



5.

 1 0 0 1/3
0 1 0 −2/3
0 0 1 1/3



inTheorem 2.1.2 (Solutions of A~x = ~b unchanged by row oper-
ations). If the matrix [A|~b] representing a system of linear equations

A~x = ~b can be turned into [A′|~b′] by a sequence of row operations, then

the set of solutions of A~x = ~b and set of solutions of A′~x = ~b′ coincide.

Proof. Row operations consist of multiplying one equation by a nonzero
number, adding a multiple of one equation to another, and exchanging two
equations. Any solution of A~x = ~b is thus a solution of A′~x = ~b′. In the
other direction, any row operation can be undone by another row operation
(exercise 2.1.5), so any solution A′~x = ~b′ is also a solution of A~x = ~b. ¤

Theorem 2.1.2 suggests that we solve A~x = ~b by using row operations
to bring the system of equations to the most convenient form. In example
2.1.3 we apply this technique to equation 2.1.1. For now, don’t worry about
how the row reduction was achieved. Concentrate instead on what the row-
reduced matrix tells us about solutions to the system of equations.

Example 2.1.3 (Solving a system of equations with row opera-
tions). To solve

2x + y + 3z = 1

x− y = 1

2x + z = 1,

2.1.6

we can use row operations to bring the matrix 2 1 3 1
1 −1 0 1
2 0 1 1

 to the form

[ 1 0 0
0 1 0
0 0 1︸ ︷︷ ︸

Ã

1/3
−2/3

1/3︸ ︷︷ ︸
~̃b

]
. 2.1.7

(To distinguish the new A and ~b from the old, we put a “tilde” on top:

Ã, ~̃b.) In this case, the solution can just be read off the matrix. If we put
the unknowns back in the matrix, we getx 0 0 1/3

0 y 0 −2/3
0 0 z 1/3

 or

x = 1/3

y = −2/3

z = 1/3 4
2.1.8

Echelon form

Some systems of linear equations may have no solutions, and others may
have infinitely many. But if a system has solutions, they can be found by


