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Exercise 2.6.8: By “identified
to R3 via the coefficients” we mean
that

p(x) = a+ bx+ cx2 ∈ P2

is identified to a
b
c

 .

Part c: The pattern should be-
come clear after the first three.

2.6.7 Let V be the vector space of C1 functions on (0, 1). Which of the following
are subspaces of V ?

a. { f ∈ V | f(x) = f ′(x) + 1 } b. { f ∈ V | f(x) = xf ′(x) }
c.
{
f ∈ V

∣∣ f(x) = (f ′(x))2
}

2.6.8 Let P2 be the space of polynomials of degree at most two, identified to
R3 via the coefficients. Consider the mapping T : P2 → P2 given by

T (p)(x) = (x2 + 1)p′′(x)− xp′(x) + 2p(x).

a. Verify that T is linear, i.e., that T (ap1 + bp2) = aT (p1) + bT (p2).

b. Choose the basis of P2 consisting of the polynomials p1(x) = 1, p2(x) = x,
p3(x) = x2. Denote by Φ{p} : R3 → P2 the corresponding concrete-to-abstract
linear transformation. Show that the matrix of

Φ−1
{p} ◦ T ◦ Φ{p} is

 2 0 2
0 1 0
0 0 2

 .
c. Using the basis 1, x, x2, . . . , xn, compute the matrices of the same differen-

tial operator T , viewed first as an operator from P3 to P3, then from P4 to P4,
. . . , Pn to Pn (polynomials of degree at most 3, 4, . . . , n).

Exercise 2.6.9 says that any lin-
early independent set can be ex-
tended to form a basis. In French
treatments of linear algebra, this
is called the theorem of the incom-
plete basis; it plus induction can
be used to prove all the theorems
of linear algebra in chapter 2.

2.6.9 a. Let V be a finite-dimensional vector space, and let ~v1, . . . , ~vk ∈ V be
linearly independent vectors. Show that there exist ~vk+1, . . . , ~vn ∈ V such that
~v1, . . . , ~vn is a basis of V .

b. Let V be a finite-dimensional vector space, and let ~v1, . . . , ~vk ∈ V be
a set of vectors that spans V . Show that there exists a subset i1, i2, . . . , im of
{1, 2, . . . , k} such that ~vi1 , . . . , ~vim is a basis of V .

2.6.10 Let LA, RA : Mat (n, n)→ Mat (n, n) be the transformations

LA, RA : Mat (n, n)→ Mat (n, n) given by

LA(B) = AB, RA(B) = BA.

What are |LA| and |RA| in terms of |A| and |B|?

2.6.11 Let A =

[
1 a
0 1

]
and B =

[
1 0
b 1

]
. What is the dimension of the span

of A,B,AB,BA in terms of a and b?

2.7 Eigenvectors and eigenvalues

When Werner Heisenberg discovered ‘matrix’ mechanics in 1925, he
didn’t know what a matrix was (Max Born had to tell him), and
neither Heisenberg nor Born knew what to make of the appearance
of matrices in the context of the atom. (David Hilbert is reported to
have told them to go look for a differential equation with the same
eigenvalues, if that would make them happier. They did not follow
Hilbert’s well-meant advice and thereby may have missed discovering
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the Schrödinger wave equation.) —M. R. Schroeder, Mathematical
Intelligencer, Vol. 7, No. 4

In section 2.6 we discussed the change of basis matrix, but we never said
why one would want to change bases. Of course, it is because some problem
is easier in a different basis. Most often this comes down to some problem
being easier in an eigenbasis: a basis of eigenvectors.

Before defining the terms, let’s give an example.

Example 2.7.1 (Fibonacci numbers). Fibonacci numbers are the num-
bers 1, 1, 2, 3, 5, 8, 13, . . . defined by a0 = a1 = 1 and an+1 = an + an−1 for
n ≥ 1. We propose to prove the formula

We can analyze equation 2.7.1
to estimate how large an is. Note
that for large n, the second term in
equation 2.7.1 is negligible, since

1−
√

5

2
≈ −0.618.

For instance, ( 1−
√

5
2

)1000 starts
with at least 200 zeros after the
decimal point.

But the first term grows expo-
nentially, since

1 +
√

5

2
≈ 1.618.

Assume n = 1000. Using loga-
rithms base 10 to evaluate the first
term, we see that

log10 a1000 ≈ log10

5 +
√

5

10

+

(
1000× log10

1 +
√

5

2

)
≈ −.1405 + 1000× .20899

≈ 208.85,

which means that a1000 has 209
digits.

an =
5 +
√

5
10

(
1 +
√

5
2

)n
+

5−
√

5
10

(
1−
√

5
2

)n
. 2.7.1

Equation 2.7.1 is quite amazing: it isn’t even obvious that the right side
is an integer! The key to understanding it is the following matrix equation:[

an
an+1

]
=
[

0 1
1 1

] [
an−1

an

]
. 2.7.2

The first equation says an = an, and the second says an+1 = an + an−1.
What have we gained? We see that[

an
an+1

]
=
[

0 1
1 1

] [
an−1

an

]
=
[

0 1
1 1

]2 [
an−2

an−1

]
= · · · =

[
0 1
1 1

]n [ 1
1

]
.

This looks useful, until you start computing the powers of the matrix, and
discover that you are just computing Fibonacci numbers the old way. Is
there a more effective way to compute the powers of a matrix?

Certainly there is an easy way to computer the powers of a diagonal
matrix; you just raise all the diagonal entries to that power:

c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . cm


n

=


cn1 0 . . . 0
0 cn2 . . . 0
...

...
. . .

...
0 0 . . . cnm

 . 2.7.3

We will see that we can take advantage of this. Let

P =
[

2 2
1 +
√

5 1−
√

5

]
, so P−1 =

1
4
√

5

[√
5− 1 2√
5 + 1 −2

]
2.7.4

and “observe” that if we set A =
[

0 1
1 1

]
, then

P−1AP =
[ 1+

√
5

2 0
0 1−

√
5

2

]
. 2.7.5

is diagonal. This has the following remarkable consequence:

(P−1AP )n = (P−1AP )(P−1︸ ︷︷ ︸
I

AP ) . . . (P−1AP )(P−1︸ ︷︷ ︸
I

AP ) = P−1AnP,

2.7.6


