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1.9 The Mean value theorem and criteria for
differentiability

I turn with terror and horror from this lamentable scourge of contin-
uous functions with no derivatives.—Charles Hermite, in a letter to
Thomas Stieltjes, 1893

In this section we discuss two applications of the mean value theorem. The
first extends that theorem to functions of several variables, and the second
gives a criterion for determining when a function is differentiable.

The mean value theorem for functions of several variables

The derivative measures the difference of the values of functions at different
points. For functions of one variable, the mean value theorem (theorem
1.6.12) says that if f : [a, b] → R is continuous, and f is differentiable on
(a, b), then there exists c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a). 1.9.1

The analogous statement in several variables is the following.

inTheorem 1.9.1 (Mean value theorem for functions of several
variables). Let U ⊂ Rn be open, f : U → R be differentiable, and

the segment [a,b] joining a to b be contained in U . Then there exists

c ∈ [a,b] such that

f(b)− f(a) = [Df(c)](
−→

b− a). 1.9.2
Theorem 1.9.1: The segment

[a,b] is the image of the map

t 7→ (1− t)a + tb,

for 0 ≤ t ≤ 1. inCorollary 1.9.2. If f is a function as defined in theorem 1.9.1, then

|f(b)− f(a)| ≤
(

sup
c∈[a,b]

∣∣∣ [Df(c)]
∣∣∣)| −→b− a|. 1.9.3

Why write equation 1.9.3, with
the sup, rather than

|f(b)− f(a)| ≤ |[Df(c)]| |
−→

b− a|,
which of course is also true? Using
the sup means that we do not need
to know the value of c in order to
relate how fast f is changing to
its derivative; we can run through
all c ∈ [a,b] and choose the one
where the derivative is greatest.
This will be useful in section 2.8
when we discuss Lipschitz ratios.

Proof of corollary 1.9.2. This follows immediately from theorem 1.9.1
and proposition 1.4.11. ¤
Proof of theorem 1.9.1. As t varies from 0 to 1, the point (1− t)a+ tb
moves from a to b. Consider the mapping g(t) = f((1− t)a + tb). By the
chain rule, g is differentiable, and by the one-variable mean value theorem,
there exists t0 such that

g(1)− g(0) = g′(t0)(1− 0) = g′(t0). 1.9.4

Set c = (1 − t0)a + t0b. By proposition 1.7.14, we can express g′(t0) in
terms of the derivative of f :

g′(t0) = lim
s→0

g(t0 + s)− g(t0)
s

= lim
s→0

f
(
c + s(b− a)

)
− f(c)

s
= [Df(c)](

−→
b− a).

1.9.5
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So equation 1.9.4 reads

f(b)− f(a) = [Df(c)](
−→

b− a). ¤ 1.9.6

Differentiability and pathological functions

Most often, the Jacobian matrix of a function is its derivative. But as we
mentioned in section 1.7, there are exceptions. It is possible for all partial
derivatives of f to exist, and even all directional derivatives, and yet for f
not to be differentiable! In such a case the Jacobian matrix exists but does
not represent the derivative.

Example 1.9.3 (A nondifferentiable function with Jacobian ma-
trix). This happens even for the innocent-looking function

f
(

x
y

)
=

x2y

x2 + y2
1.9.7

shown in figure 1.9.1. Actually, we should write this function

f
(

x
y

)
=


x2y

x2 + y2
if

(
x

y

)
6=

(
0
0

)
0 if

(
x

y

)
=

(
0
0

)
.

1.9.8
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z

Figure 1.9.1.

The graph of f is made up of
straight lines through the origin,
so if you leave the origin in any
direction, the directional deriva-
tive in that direction certainly ex-
ists. Both axes are among the lines
making up the graph, so the direc-
tional derivatives in those direc-
tions are 0. But clearly there is
no tangent plane to the graph at
the origin.

“Vanishes” means “equals 0.”

“Identically” means “at every

point.”

You have probably learned to be suspicious of functions that are defined
by different formulas for different values of the variable. In this case, the
value at

(
0
0

)
is really natural, in the sense that as

(
x
y

)
approaches

(
0
0

)
,

the function f approaches 0. This is not one of those functions whose value
takes a sudden jump; indeed, f is continuous everywhere. Away from the
origin, this is obvious by corollary 1.5.30; away from the origin, f is a
rational function whose denominator does not vanish. So we can compute
both its partial derivatives at any point

(
x
y

)
6=

(
0
0

)
.

That f is continuous at the origin requires a little checking, as follows.
If x2 + y2 = r2, then |x| ≤ r and |y| ≤ r so |x2y| ≤ r3. Therefore,∣∣∣f (

x
y

)∣∣∣ ≤ r3

r2
= r, and lim(

x
y

)
→

(
0
0

) f
(

x
y

)
= 0. 1.9.9

So f is continuous at the origin. Moreover, f vanishes identically on both
axes, so both partial derivatives of f vanish at the origin.

So far, f looks perfectly civilized: it is continuous, and both partial
derivatives exist everywhere. But consider the derivative in the direction

of the vector
[

1
1

]
: the directional derivative

lim
t→0

f

((
0
0

)
+ t

[
1
1

])
− f

(
0
0

)
t

= lim
t→0

t3

2t3
=

1
2
. 1.9.10


