
22 Chapter 0. Preliminaries

0.6 Infinite sets

One reason set theory is accorded so much importance is that Georg Can-
tor (1845–1918) discovered that two infinite sets need not have the same
“number” of elements; there isn’t just one infinity. You might think this is
just obvious; for example, that clearly there are more whole numbers than
even whole numbers. But with the definition Cantor gave, two sets A and
B have the same number of elements (the same cardinality) if you can set
up a bijective correspondence between them (i.e., a mapping that is one to
one and onto). For instance,
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establishes a bijective correspondence between the natural numbers and the
even natural numbers. Similarly,

0 1 2 3 4 5 6 . . .

0 1 −1 2 −2 3 −3 . . .

Recall (section 0.3) that N is
the “natural numbers” 0, 1, 2, . . . ;
Z is the integers; R is the real
numbers.

It would seem likely that R and
R2 have different infinities of ele-
ments, but that is not the case (see
exercise A1.5).

establishes a bijective correspondence between N and Z. More generally,
any set whose elements you can list has the same cardinality as N. But in
1873 Cantor discovered that R does not have the same cardinality as N: it
has a bigger infinity of elements. Indeed, imagine making any infinite list
of real numbers, say between 0 and 1, so that written as decimals, your list
might look like

.154362786453429823763490652367347548757 . . .

.987354621943756598673562940657349327658 . . .

.229573521903564355423035465523390080742 . . .

.104752018746267653209365723689076565787 . . .

.026328560082356835654432879897652377327 . . .

. . . .
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Figure 0.6.2.

Joseph Liouville (1809–1882)

Now consider the decimal .18972 . . . formed by the elements of the di-
agonal digits (in bold in equation 0.6.2), and modify it (almost any way
you want) so that every digit is changed, for instance according to the rule
“change 7s to 5s and change anything that is not a 7 to a 7”: in this case,
your number becomes .77757 . . . . Clearly this last number does not appear
in your list: it is not the nth element of the list, because it doesn’t have
the same nth decimal.

Sets that can be put in one-to-one correspondence with the natural num-
bers are called countable. Those that cannot are called uncountable; the
set R of real numbers is uncountable.

Existence of transcendental numbers

An algebraic number is a root of a polynomial equation with integer co-
efficients: the rational number p/q is algebraic, since it is a solution of
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qx − p = 0, and so is
√

2, since it is a root of x2 − 2 = 0. A number that
is not algebraic is called transcendental. In 1851 Joseph Liouville came up
with the transcendental number (now called the Liouvillian number)

Figure 0.6.3.
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= 0.11000100000000000000000100 . . . , 0.6.3

the number with 1 in every position corresponding to n! and 0s elsewhere. In
1873 Charles Hermite proved a much harder result, that e is transcendental.
But Cantor’s work on cardinality made it obvious that there must exist
uncountably many transcendental numbers: all those real numbers left over
when one tries to put the real numbers in one-to-one correspondence with
the algebraic numbers.

Here is one way to show that the algebraic numbers are countable. First
list the polynomials a1x+a0 of degree≤ 1 with integer coefficients satisfying
|ai| ≤ 1, then the polynomials a2x

2 + a1x+ a0 of degree ≤ 2 with |ai| ≤ 2,
etc. The list starts

−x− 1,−x+ 0,−x+ 1,−1, 0, 1, x− 1, x, x+ 1,−2x2 − 2x− 2, 0.6.4

− 2x2 − 2x− 1,−2x2 − 2x,−2x2 − 2x+ 1,−2x2 − 2x+ 2, . . . .

(The polynomial −1 in equation 0.6.4 is 0 ·x−1.) Then we go over the list,
crossing out repetitions.

Next we write a second list, putting first the roots of the first polynomial
in equation 0.6.4, then the roots of the second polynomial, etc.; again, go
through the list and cross out repetitions. This lists all algebraic numbers,
showing that they form a countable set.

Other consequences of different cardinalities

Two sets A and B have the same cardinality (denoted A ³ B) if there exists
an invertible mapping A → B. A set A is countable if A ³ N, and it has
the cardinality of the continuum if A ³ R. We will say that the cardinality
of a set A is at most that of B (denoted A ¹ B) if there exists a one-to-one
map from A to B. Bernstein’s theorem, sketched in exercise 0.6.5, shows
that if A ¹ B and B ¹ A, then A ³ B.

The fact that R and N have different cardinalities raises all sorts of
questions. Are there other infinities besides those of N and R? We will see
in proposition 0.6.1 that there are infinitely many.

Let P(E) denote the set of all subsets of E, called the power set of E.
Clearly for any set E there exists a one-to-one map f :E → P(E); for
instance, the map f(a) = {a}. So the cardinality of E is at most that of
P(E). In fact, it is strictly less. If E is finite and has n elements, then P(E)
has 2n elements, clearly more than E (see exercise 0.6.2). Proposition 0.6.1
says that this is still true if E is infinite.

inProposition 0.6.1. A mapping f : E → P(E) is never onto.


