Contents

FOREWARD by William Thurston xi		
INTRODUCTION x		
CHAP	FER 11 Geometry of hyperbolic space	1
11.1	The hyperboloid model	2
11.2	Other models of hyperbolic space	10
11.3	Automorphisms of \mathbb{H}^3 as 2×2 matrices	19
11.4	Classifying automorphisms of \mathbb{H}^3	22
11.5	Elementary and non-elementary Kleinian groups	29
11.6	Limit sets of Kleinian groups	32
11.7	Jørgensen's inequality	41
11.8	The Margulis lemma and the thick-thin decomposition	46
11.9	Algebraic limits of Kleinian groups	50
11.10	Geometric limits of Kleinian groups	58
11.11	The Klein-Maskit combination theorems	82
11.12	The Poincaré polyhedron theorem and fundamental domains	103
11.13	Geometrically finite Kleinian groups	122
CHAPTER 12 Rigidity theorems		135
12.1	Boundary values of quasi-isometries	135
12.2	The Ahlfors finiteness theorem	156
12.3	McMullen's rigidity theorem	164
12.4	Mostow's rigidity theorem	166
12.5	Quadratic differentials and measured foliations	168
12.6	Geodesic laminations	185
12.7	Quadratic differentials and measured laminations	203
12.8	Pleated surfaces and geodesic laminations	214
12.9	Injectivity radii of quasi-Fuchsian manifolds	225
CHAPTER 13 Hyperbolization of 3-manifolds that		
fi	ber over the circle	242
13.1	Introduction	242

13.2	Proof of the easy direction	249
13.3	Sketch of proof of the hard direction	251
13.4	The compactness of Bers slices	255
13.5	$\mathbb R\text{-}\mathrm{trees}$ and Hatcher's construction	259
13.6	Skora's theorem	284
13.7	Otal's compactness theorem	294
13.8	The double limit theorem	316
13.9	Completing the proof of hyperbolization	323

APPENDIX D

D1	Th	e Nullstellensatz and Selberg's lemma	327
D	1.1	Commutative algebra: a crash course	327
D	1.2	Jacobson rings	330
D	1.3	A variant of the Nullstellensatz	333
D	1.4	Selberg's lemma	336
D2	Th	e Margulis lemma: another proof	338
D3	Fu	ndamental groups, amalgamated sums, and HNN extensions	342
D	3.1	Covering space theory: a crash course	342
D	3.2	Amalgamated sums and van Kampen's theorem	349
D	3.3	HNN extensions and an analogue of Van Kampen's theorem	351
D4	Ari	thmetic Kleinian groups	354
D	4.1	Algebraic number theory: a crash course	354
D	4.2	Bianchi groups, cusps, and the ideal class group	362
D	4.3	Co-compact arithmetic Kleinian groups	367
D	4.4	Quaternions and arithmetic groups	373
D5	En	ds of a topological space	386
D6	Th	e space of simple geodesics	398
D7	Per	riod coordinates	415
D8	Erg	godic flow, Hopf's argument, and Mostow rigidity	433
D	8.1	Ergodicity: a crash course	434
D	8.2	Geodesic and Hamiltonian flows	445
D	8.3	Hopf's argument and Mostow's theorem	447
D9	Tei	chmüller flow is ergodic	451

D9.	.1	Unit strata have finite volume	452
D9.	.2	Unique ergodicity	471
D9.	.3	Unique ergodicity, recurrence, and full measure	481
D9.	.4	Unique ergodicity and convergence	484
D9.	.5	Proof that Teichmüller flow is ergodic	489
D10	Μ	inimal but not ergodic	491
D11	Su	illivan's rigidity theorem	500
D12	Fi	brations and the Thurston norm	510

BIBLIOGRAPHY	535
INDEX	541