
Contents

FOREWARD by William Thurston xi

INTRODUCTION xv

CHAPTER 11 Geometry of hyperbolic space 1

11.1 The hyperboloid model 2
11.2 Other models of hyperbolic space 10
11.3 Automorphisms of H3 as 2⇥ 2 matrices 19
11.4 Classifying automorphisms of H3 22
11.5 Elementary and non-elementary Kleinian groups 29
11.6 Limit sets of Kleinian groups 32
11.7 Jørgensen’s inequality 41
11.8 The Margulis lemma and the thick-thin decomposition 46
11.9 Algebraic limits of Kleinian groups 50
11.10 Geometric limits of Kleinian groups 58
11.11 The Klein-Maskit combination theorems 82
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