Index

Bold page numbers indicate a page where a term is defined, either formally or informally. Page numbers in italics indicate that the term is used in a theorem, proposition, lemma, or corollary.

Abelian differential, 14, see holomorphic 1-form
adjacency matrix, 172, 174
Ahlfors finiteness theorem, 234, 237
no wandering domain, 237
airplane (Julia set), 226
Alexander, James, 175
Alexander trick, 90, 175, 175
algebraic intersection number, 189
algebraic number, 211
Diophantine, 211
totally real, 22
angles
measured in turns, 86
periodic, preperiodic, 86
Anosov, Dmitri, 2
Anosov homeomorphism, 2
arc in K_p, 104
asymptotic geometry of Riemann surface, 164
attracting cycle, 45
of polynomial, 51
attracting fixed point, 44, 50
linearizing chart, 49
linearizing map, 49
attracting petal, 54, 54, 55, 136, 140
attracting sector, 136, 138
Avila, Artur, 195, 203, 204
axis of σ_f, 27
Baker, I. N., 235
Banach algebra, 217
Banach fixed point theorem, 70
generalized, 72, 72
Bartholdi, Laurent, 79, 223, 227
basilica, 104
basin, 50
immediate, 48
of attracting cycles, of attraction, 48, 48
basin, cont.
of infinity, 49, 62, 62
Beltrami form
notation, 148
pulled back by analytic map, 237
pushed forward by isomorphism, 237
Thurston pullback map, 148, 147–149
Bers, Lipman, 1
Bers slices (compactness of), 234, 239
Berstein, Israel, 96
Bestvina, M., 5, 6
Bestvina-Handel algorithm, 6–7
Bielefeld, Ben, 85
bi-Perron number, 33, 33, 34
Birman, Joan, 191
Birman exact sequence, 191, 193
Blanchard, Paul, 44
Böttcher chart, 63, 114, 241
extending to rational points, 75–77
extending to S^1, 63–75
Böttcher coordinate, 58, 58, 60, 101
domain of, 118
η, 103
extension of, 61, 62
maximal domain of, 61, 62, 62
near infinity, 61, 62
quadratic polynomials, 118
Bowman, Josh, 22
branched map, 79, 80
Branner, Bodil, 44
Brinkmann, Peter, 5
Brjuno, A. D., 53
Brjuno number, 215, 215
Buff, Xavier, 148, 221, 223
\mathbb{C} (Riemann sphere), 40
c, c 121
Calta, Kariane, 11
Cantor set, 40, 43, 114, 116
Carathéodory loop, 63, 63–73, 75, 101, 111, 124
pinched disc model, 102
Carathéodory’s theorem (footnote), 63
cardioid (of Mandelbrot set), 122, 123, 126
cerf fibration theorem, 191
chart, 46
Chebychev polynomial, 230, 230

254
Index: page numbers in bold indicate definitions, possibly informal

Cheritat, Arnaud, 249
classification of homeomorphisms of tori, 2
cocycle, 198
collar, 163
combinatorial rotation number, 239, 240
compactness of Bers slices, 234, 239
companion angles, 100, 107, 107, 113
computing, 113
generating orbit portrait, 131
parabolic cycles, 135
pinched disc model of M, 124
primitive, 109
satellite, 109
unlinked, 135
complex 1-form, 14
concatenation, 185
cone metric, 67
conjugacy, 48, 58
convergent sequence, 48
in dynamical systems, 35
constant type, 214, 215, 216
continued fraction, 212
contracting eigenvalue, 2
convergence in moduli space, 160
convergent (of continued fraction), 213, 214
co-rabbit, 226
cotangent space to Teichmüller space, 149
Coulbois, Thierry, 5, 205
covering map
finite, 128
of orbifold, 228
Cremer, H., 53
Cremer number, 210, 221
Cremer’s theorem, 209
Crit$_p$, Crit$_p^*$ (critical points of p), 40
critical orbit, 40
critical point, 39, 50
in sector, 75
of polynomial, 40, 40
orbit of, 43
ordinary, 154
cup-bracket, 201
cusp, 121, 122, 142, 143
cycle (orbit of periodic point), 45
attracting, linearly attracting, 45
multiplier of, 45
cycle (orbit of periodic point), cont.
repelling, 45
superattracting, 45
deformation theory, 198
degenerate Levy cycle, 95, 96
Dehn multi-twist, 10, 11
Dehn twist, 9, 9–11, 78, 79, 179
around multicurve, 10, 11
composition of, 10
direction, 10, 189, 190
isotopy class, 9
mapping class group, 10
see also metric Dehn twist
dendrite, 115, 246–247
Devaney, Robert, 44
dichotomy for quadratic polynomials, 114
dilatation factor, see stretch factor
Dioph$_2$, 211–215
measure 0, 212
Diophantine number, 210, 211
measure, 212
Diophantine of exponent d, 210
direct image operator, 149
for proper map of Riemann surface, 150
dividing line, 87
see also dynamical dividing line
dominant eigenvalue, see leading eigenvalue
dominant eigenvector, see leading eigenvector
Douady, Adrien, 58, 102, 118, 171, 201
Douady-earle extension, 187
double limit theorem, 234
dual graph, 16
dynamical dividing line, 111, 112
attributing angles to endpoints, 111
dynamical systems
conjugacy, 35
differential equations, 35
iterations, 35
morphism, 35
parameter space, 113
semi-conjugacy, 35
Ecalle, Jean, 53
Ecalle-Voronin classification of parabolic fixed points, 56
eigenvalue
contracting, 2
Index: page numbers in italics indicate theorems, propositions, etc.

eigenvalue, cont.
 expanding, 2
 \(\lambda \), 83
leading, 172
Thurston, 83
eigenvector
 leading, 172
 of \(A \) when \(A \geq 0 \), 173
Eilenberg-Maclane space, 186
elliptic transformation, 20
Epstein, Adam, 223
essential curve, 96
 innermost, 96
Euler characteristic of orbifold, 81
expanding eigenvalue, 2
expanding map, 67–68, 69
expansion factor, see stretch factor
extended spider, 85, 87, 87
external angle, 74
 of fixed point, 75
external parametrization, 103
external ray of Julia set, 74, 114
 at rational angle lands, 76
 landing at root, 107
 landing of, 74
external ray of Mandelbrot set, 121, 122, 133
\(f \)-stable multicurve, 83, 168
\(f_0 \), see Thurston spider map
Farb, Benson, 9, 189, 194
Farey graph, 191
Fathi, Albert, 1
Fatou, Pierre, 53, 220, 234
Fatou flower, 53, 54, 55–57, 136, 141
 see also attracting petal, repelling petal
Fatou set \(\Omega_f \), 36, 226, 235
fat set (Baire), 209
Fenchel-Nielsen coordinates, 176, 180
filled Julia set, 37, 42, 100
 each component full, 39
 of polynomial, 36, 36
 of quadratic polynomial, 114
pinched disc model, 102, 102
totally invariant, 38
 when connected, 40
fill surface, 15
final quadratic differential, 27
finite covering map, 128
finite type, 185
Fisher, Yuval, 85
fixed point, 45
 attracting, linearly attracting, 44
 external angle, 75
 indifferent, 44, 53
 linearizable, 45
 multiplier of function at, 44
 nonlinearizable, 45, 209
 parabolic, 53
 rationally indifferent, 45
 repelling, 44
 superattracting, 44, 58
flexible Lattès map, 156, 231
floor, 212
Floquet exponent, 201, 204
Floquet map, 201, 202
Floquet spectrum, 202
 logarithmic, 202
flow of infinitesimal automorphisms, 200
foliations, 2, 14
 horizontal, 2
 invariant, 2
 mateable, 248
 measured, 6
 singular, 2
 stable, 6
 vertical, 2
formal power series, 207, 207
Franks, J., 5
Fried, D., 33
Fuchsian group, 186, 245–247
full set, 39
functional calculus, 218, 219
\(\Gamma_E, \Gamma_N \), see essential curve, nonessential curve
gap principle, 28, 28, 85, 166
generalized Banach fixed point theorem, 72, 72
goedetic, 27
 non-simple, 169
geometric intersection number, 15, 188–189, 190
geometric limit, 234
Gleason, Andrew, 127
Gleason’s lemma, 127
Goldberg, Lisa, 130
Index: page numbers in bold indicate definitions, possibly informal

- graph formed by multicurves, 16
- Green’s function in dynamics, 60, 60 extension, 62
 - maximal domain, 62
 - near infinity, 62
- Grötzsch defect, 162
 - bounded below, 164
- Gutkin, Eugene, 11
- Hamenstädt, Ursula, 22, 195, 204, 205
- Hamstrom, Mary-Elizabeth, 191
- Handel, M., 5, 6
- Harker, J., 194
- Hatcher, Allen, 194
- Hausdorff dimension, 209
- Henriksen, Christian, 221
- Herman, Michel, 53, 220
- Herman ring, 222, 235
- holomorphic 1-form, 195
 - of area 1, 196
- homeomorphisms of surfaces
 - classification, 2–5, 4, 26–29
 - marked points, 29, 30
 - see also periodic, pseudo-Anosov, reducible
- homeomorphisms of tori, 1–2, see also Anosov homeomorphism
 - stable, 2
- homotopy implies isotopy, 176
- Hubbard tree, 104, 105, 106
 - combinatorial object, 106
- Hubert, Pascal, 11
- Humphries, S. P., 10, 194
- hyperbolic automorphism, 57
- hyperbolic component of interior of Mandelbrot set, 120, 124, 126, 143
 - shape, 142
- hyperbolic length, 28, 41
- hyperbolic metric, 41, 64, 158, 182
- hyperbolic orbifold, 81, 82
- hyperbolic polynomial, 63
- hyperbolic space (Sullivan’s dictionary), 234
- hyperbolic transformation, 20, 21
- hyperbolization theorem for Haken manifolds
 - Sullivan’s dictionary, 234
- ideal class group, 231
- i.e., see interval exchange map
 - immediate basin, 48
 - indifferent cycle, 45
 - indifferent fixed point, 44, 53
 - irrational, see irrationally indifferent
 - fixed point
 - parabolic, see rationally indifferent
 - rationally indifferent, 45
- infinitesimal automorphism, 200
 - flow, 200
- initial quadratic differential, 27
- Inn G, see inner automorphism
- inner automorphism, 184
- innermost essential curve, 96
- internal angle, 103
- internal parametrization, 103, 103
- internal ray, 103, 104
- intersection number
 - algebraic, 189
 - geometric, 15, 189, 190
- interval exchange map, 22, 25–26
- irrationally indifferent fixed point, 45
 - conditions for linearizability, 215, 216, 221
 - formal power series, 207
 - linearizable, nonlinearizable, 45
- Jc, 114
- Jp, see Julia set
- Judge, Chris, 11
- Julia, Gaston, 234
- Julia set, 36, see also filled Julia set
 - airplane, 226
 - co-rabbit, 226
 - local connectivity, 63–73
 - of entire function, 37
 - of polynomial, 36, 36, 38
 - of rational function, 37
 - perfect, 39
 - rabbit, 226, 227
 - Sullivan’s dictionary, 234
 - totally invariant, 38
- Ke, 114
- Kp, see filled Julia set
- Kahn, Jeremy, 63, 124
- KAM theorem, 207
- Keen, Linda, 44
- Klein-Maskit combination, 234
- kneading sequence, 43, 92, 92, 134
kneading sequence, cont.
 of Thurston spider map, 92
 of unimodular map, 92
Kobayashi metric, 151, 220
Koch, Sarah, 223, 227
Kolmogorov, Andrei, 207
Kontsevich, Maxim, 196
Kontsevitch-Zorich cocyle, 203, 204
$L_\tau (\tau)$ (hyperbolic length), 166
landing of external ray
 at rational angle, 76
 of Julia set, 74
Lattès, Samuel, 230
Lattès map, 230, 230
 flexible, 231
Laudenbach, François, 1
Laurent series, 208
leading eigenvalue, leading eigenvector, 172
leg (of spider), 87, 88
Levy, Silvio, 96
Levy-Berstein theorem, 98
 weak form of, 91
Levy cycle, 95
 degenerate, 95, 96
 Thurston obstruction, 95
Lickorish, W. B. R., 10
Lickorish generator, twist, 189, 189, 193,
 194, 205
limb of Mandelbrot set, 123, 248, 248
limit set, 226, 234
linearizability, 44
linearization
 global attracting, 49, 49
 global repelling, 51
 irrationally indifferent fixed point, 215,
 216, 206–222
 local (attracting and repelling) 46
 linearizing chart, 49, 51
 for repelling fixed points, 51, 52
 linearizing coordinate, 45
 linearly attracting cycle, 45
 linearly attracting fixed point, 44, 46, 49
 global theory, 48–51
 linearizing map, 58
Liouville, Joseph, 211
Liouville’s number, 210, 215
Liouville’s theorem, 211
local connectivity of Julia set, 63–73
 hyperbolic case, 63, 65
 parabolic case, 64, 70–73
 subhyperbolic case, 64, 66–70
local chart, local coordinate, 46
local degree, 39, 80, 81, 152, 153
logarithmic Floquet spectrum, 202
logarithmic spectrum, 28, 28, 166
log-length, 28, 28, 166
Los, Jérôme, 5
Lyapunov spectrum, 203, 203–205
Lyubich, Mikhail, 63, 124
Mandelbrot set, 91, 114, 114, 114
 cardioid, 122, 123, 126
cartoon figure, 123
 combinatorial description, 143
 compared to tricorn, 125
 component of interior, 126
 center, 103
conformal map of complement, 118
 connected, 119
 proof, 119–120
external ray of, 121
 features, 126–143
hyperbolic component of interior, 124,
 126, 143
limb of, 123, 248, 248
locally connected, see MLC conjecture
MLC conjecture, 124
not self-similar, 115
pictures, 116, 117, 122
structure of, 133
wake, 133
mapping class group, 1, 10
 algebraic interpretation, 185, 184–188
Dehn twist, 10
Out F_n, 188
outer automorphisms of free group, 188
pure, 223
topologist’s, 185
Margalit, Dan, 9, 189, 194
marked point, 29
Markov decomposition, matrix, 32, 172
mateable foliations, 248
mateable polynomials, see mating
Index: page numbers in bold indicate definitions, possibly informal

mating, 234
 of Fuchsian groups, 245–247
 of polynomials, 245, 246, 246, 248
 topological, 245, 247
maximal stratum, 197
MCG (mapping class group), 9
McMullen, Curt, 11, 223
metric
 and expanding map, 67
 and strongly expanding map, 69
 cone, 67
 hyperbolic, 158
 singular, 64, 66, 67
metric Dehn twist, 9, 13, 13, 19
Milnor, John, 56, 130
Misiurewicz, Michal, 5
MLC conjecture, 124
Moduli (moduli space), 159, 160
moduli space, 159
 convergence in, 160
 labeled, 159
 local, 200
 Thurston pullback map, 223
modulus of annulus, 13, 156-159
 behavior under cover, 156
 bounds on, 165
Montel’s theorem, 38
Moore, R. L., 246
Moore quotient, 246
Mostow’s theorem, 27
multicurve, 10
 f-stable, 83
 Dehn twists, 15–22
 nonperipheral, 83
 obstruction multicurve, 84
 on (S^2, P_f), 83
 reducing, 3
 web, 15
multiplicative ergodic theorem, 203
multiplier
 of cycle, 45
 of function at fixed point, 44
Mumford compactness theorem, 159, 166
Nekrashevych, Volodymyr, 79, 223, 227
Nielsen, Jakob (footnote), 1
Nielsen conjecture, 26
non-attracting cycle, 234
non-elliptic fixed point, 234
nonessential curve, 96
nonhyperbolic orbifold, 82, 228–233
 nonfractal Julia sets, 115
nonlinear dynamical systems, 113
nonperipheral curve, 10
nonperipheral multicurve, 83
non-simple geodesic, length of, 169
normal family, 37, 38, 38, 49, 127
no wandering domain, 234–239
obstruction multicurve, 84
 one-sided shift, 40
 on two symbols, 114
 opening of sector, 110
Opti, 249
orbifold, 64, 67, 81, 81
 covering map of, 228
 Euler characteristic of, 81, 228, 229
 hyperbolic, 81, 82, 160
 nonhyperbolic, 82, 115, 228–233, 229
 of Thurston map, 81, 82, 82, 228
 with weights (2,2,2,2), 230, 230–233, 233
orbifold morphism, 228
orbifold weight, 67
orbit, 36
orbit portrait, 130
 and wake, 134
 generated by companion angles, 131
 nontrivial, 130, 131, 131, 131–132
 of cycle, 131, 131, 135
 primitive, 131
 satellite, 131
 trivial, 130
 valence, 130, 131
order of contact, 71
ordinary critical point, 154
organizing center, 79, 121, 133
origami, see square-tiled billiards
Oseledets, Valery, 203, 204
Oseledets’s theorem, 204
outer automorphisms (OutG), 184
 and mapping class group, 185, 184–188
 when not automorphism, 184
p_c (polynomial z → z^2 + c), 114
p_0 (polynomial), 99–113
 is conjugacy class, 131
paired polygon, 20
pairwise unlinked subset, 130
parabolic automorphism, 57
parabolic blow-up, 234
parabolic cycle
 critical points in basin, 56
 orbit portrait, 135
parabolic fixed point, 53
 Ecalle-Voronin classification of, 56
parabolic multiplicity, 53, 53
 bound on, 56
parabolic polynomial, 64
parabolic transformation, 20
parameter space, 113
 reaping in, 118
parapuzzle, 249
Peano curve, 245, 246, 247, 248
Penner, Robert, 11
Perez-Maro, Ricardo, 53
perfect set, 39
periodic angle, 86
periodic homomorphic, 2, 3, 4, 8, 26
period map, 196
period measure, 203, 205
period of root, 108
periodic point, 45
 orbit of, 45
periodic curve, 10
Perron-Frobenius theorem, 16, 172, 174
 when $A^n > 0$, 174
Perron number, 32, 32
petal, see attracting petal, repelling petal
Pilgrim, Kevin, 171, 223
pinched disc model, pinching locus, 102, 102, 124
Poenaru, Valentin, 1
Poincaré metric, see hyperbolic metric
dotted map, pointed space, 184
Poirier, Alfredo, 85
polynomial, see also p_0, quadratic polynomial
 attracting cycle, 51
 Chebychev, 230
 Hubbard tree of, 105, 106
mateable, 246
portrait (orbit portrait), 130
postcritically finite endomorphism, 227
postcritically finite map, 78
 topological, 78
postcritical point, 79
postcritical set, 66, 79, 90
preperiod, 86
preperiodic angle, 86
primitive companion angles, 109
primitive orbit portrait, 131
prong, 14, 32
proper map (restriction of), 50
pseudo-Anosov homeomorphism, 2, 3, 4,
 11–26 26
 area preserving, 3
 billiard example, 12–14
 composition of Dehn twists, 16
 marked points, 30, 30
 multicurve example, 15–22
 not homotopic to reducible, 4
 see also stretch factor
pure mapping class group, 223
push map, 191
puzzles, 249
$\mathbb{Q}^\text{even}/\mathbb{Z}$, $\mathbb{Q}^\text{odd}/\mathbb{Z}$, 86
quadratic differential, 2, 3, 27, 149, 195,
 201, 202, 246
 direct image, 150
 meromorphic, 14, 30, 149, 150, 152
 natural local coordinate, 4
quadratic irrational, 214
quadratic polynomial
 attracting cycle, 51
dichotomy, 114
 with periodic critical point, 101
R_p, R_c, R_M (external ray), 74, 107–108,
 114, 121
rabbit 102, 224, 226
radial extension, 175, 175
radial limit, 220, 221
Rafiqi, Ahmad, 22
ramified covering map, 9, see branched map
Rat_d, 235
rate of escape, 36
rate of escape function, 62, 118
rational function, 78, 84
rationally indifferent fixed point, 45
reducible homeomorphism, 2, 3, 4, 11, 26, 31
not homotopic to pseudo-Anosov, 4
reducing multicurve, 3
Rees, Mary, 96, 248
regulated path, 105
repelling cycle, 45
repelling fixed point, 44
linearizing chart, map, 51, 51, 52
repelling petal, 54, 54, 55, 136, 140
repelling sector, 136, 138
Riemann-Hurwitz formula, 154
Riesz, F., Riesz, M., 220
root of component, 103
external rays of Julia set landing, 107
period of, 108
σ_f (action of mapping class group), 26
σ_f (Thurston pullback map), 144
Sard’s theorem, 238
satellite companion angles, 109
satellite orbit portrait, 131
scattering theory, 48
Schleicher, Dierk, 85, 124
Schmidt, T.A., 11
Schottky group, 20
Schröder, Ernst, 46
Schwarz’s lemma, 220
sector, 75, 110
attracting, 136, 138
contains critical point, 75
opening of, 110
repelling, 136, 138
semi-conjugacy, 35
Shishikura, Mitsuhiro, 95
Siegel, Carl Ludwig, 53, 207
Siegel disc, 216, 222, 235
simple roots (Gleason’s lemma), 127
singular metric, 64, 66, 67
skinning map, 145
slow mating, 249
small denominator, 217
small-divisor problem, 207, 209, 215, 218
spider, 85, see also extended spider
extended, 87, 87
leg of, 87, 88
spider, cont.
q even, 87
q odd, 88
spider map, see Thurston spider map
square-tiled billiards (origamis), 12–14
standard collar, 163
stratum, strata, 196
area, 196
component of, 196
stretch factor, 4, 15, 20, 25, 33,
31–34
bi-Perron, 33
experiment, 205
Hamenstädt’s result, 195–205
most totally real, 195–205
not totally real, 22–25
Perron, 32
strongly expanding, 41, 69
subhyperbolic polynomial, 64
Sullivan, Dennis, 5, 235
Sullivan’s dictionary, 234, 235
matings and double limits, 245–249
no wandering domain, 234–239
Yoccoz inequality, 239–244
Sullivan’s no wandering domain
theorem, 235
proof, 235–239
weak version, 73, 74
superattracting cycle, 45, 100
superattracting fixed point, 44, 58,
58–59
basin of attraction, 60
surface of finite type, 185
surface of infinite type, 185
symplectic matrix, 33
eigenvalue of, 33, 34
systole, 167
θ-kneading sequence, see kneading
sequence
θ-spider, see spider
Θ-wake, see wake
T_f, 144
Tan, Lei, 95, 96, 248
Teichmüller flow, 195, 195, 196, 201
Teichmüller geodesic, 27, 27
Teichmüller metric, 26, 151
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teichmüller modular group</td>
<td>185</td>
</tr>
<tr>
<td>Teichmüller space</td>
<td>85, 149</td>
</tr>
<tr>
<td>caricature of</td>
<td>85</td>
</tr>
<tr>
<td>cotangent space to</td>
<td>149</td>
</tr>
<tr>
<td>Teichmüller theory</td>
<td>29</td>
</tr>
<tr>
<td>marked points</td>
<td>29</td>
</tr>
<tr>
<td>surface with boundary</td>
<td>29</td>
</tr>
<tr>
<td>telescoping infinite product</td>
<td>58</td>
</tr>
<tr>
<td>telescoping series</td>
<td>47</td>
</tr>
<tr>
<td>theta spider</td>
<td>80</td>
</tr>
<tr>
<td>theta-kneading sequence</td>
<td>see kneading sequence</td>
</tr>
<tr>
<td>Thue-Siegel-Roth theorem</td>
<td>212</td>
</tr>
<tr>
<td>Thurston, William</td>
<td>1, 5, 11, 194</td>
</tr>
<tr>
<td>Thurston eigenvalue</td>
<td>83, 84</td>
</tr>
<tr>
<td>necessity of condition</td>
<td>156</td>
</tr>
<tr>
<td>sufficiency of condition</td>
<td>166</td>
</tr>
<tr>
<td>Thurston obstruction</td>
<td>84</td>
</tr>
<tr>
<td>Thurston equivalence</td>
<td>80</td>
</tr>
<tr>
<td>Thurston linear transformation</td>
<td>83</td>
</tr>
<tr>
<td>figure illustrating</td>
<td>158</td>
</tr>
<tr>
<td>Thurston map</td>
<td>78, 79, 80</td>
</tr>
<tr>
<td>composed with Dehn twist</td>
<td>78, 79</td>
</tr>
<tr>
<td>Levy cycle</td>
<td>95</td>
</tr>
<tr>
<td>orbifold of</td>
<td>82, 82, 228</td>
</tr>
<tr>
<td>Thurston equivalence</td>
<td>80</td>
</tr>
<tr>
<td>with orbifold</td>
<td>2(2, 2, 2, 2), 233</td>
</tr>
<tr>
<td>Thurston matrix</td>
<td>83</td>
</tr>
<tr>
<td>figure illustrating</td>
<td>158</td>
</tr>
<tr>
<td>only finitely many</td>
<td>168</td>
</tr>
<tr>
<td>Thurston obstruction</td>
<td>84, 91, 98, 157, 159</td>
</tr>
<tr>
<td>canonical</td>
<td>171</td>
</tr>
<tr>
<td>implies degenerate Levy cycle</td>
<td>96</td>
</tr>
<tr>
<td>kneading sequence</td>
<td>93</td>
</tr>
<tr>
<td>Levy cycle</td>
<td>95</td>
</tr>
<tr>
<td>minimal</td>
<td>96</td>
</tr>
<tr>
<td>q even</td>
<td>93</td>
</tr>
<tr>
<td>q odd</td>
<td>98</td>
</tr>
<tr>
<td>Thurston pullback map</td>
<td>84, 144, 146, 224</td>
</tr>
<tr>
<td>Beltrami forms</td>
<td>148, 147–148</td>
</tr>
<tr>
<td>contraction by second iterate of</td>
<td>151</td>
</tr>
<tr>
<td>derivative of</td>
<td>149, 150</td>
</tr>
<tr>
<td>examples</td>
<td>223–227</td>
</tr>
<tr>
<td>fixed points</td>
<td>146, 147</td>
</tr>
<tr>
<td>inverse of</td>
<td>227</td>
</tr>
<tr>
<td>iterated</td>
<td>146</td>
</tr>
<tr>
<td>moduli space</td>
<td>Teichmüller space, 159, 223</td>
</tr>
<tr>
<td>Thurston pullback map, cont.</td>
<td></td>
</tr>
<tr>
<td>Thurston equivalence class</td>
<td>145</td>
</tr>
<tr>
<td>Thurston rigidity</td>
<td>84, 156, 156</td>
</tr>
<tr>
<td>flexible Lattès example</td>
<td>231</td>
</tr>
<tr>
<td>Thurston’s classification theorem</td>
<td>4</td>
</tr>
<tr>
<td>proof</td>
<td>26–29</td>
</tr>
<tr>
<td>Thurston spider map</td>
<td>89, 90, 90</td>
</tr>
<tr>
<td>kneading sequence</td>
<td>92</td>
</tr>
<tr>
<td>when has Thurston obstruction</td>
<td>91, 93</td>
</tr>
<tr>
<td>(\text{tMCG}(X)), see topologist’s mapping class group</td>
<td></td>
</tr>
<tr>
<td>topological characterization of rational functions</td>
<td>84, 234</td>
</tr>
<tr>
<td>outline of proof</td>
<td>84–85</td>
</tr>
<tr>
<td>topological mating</td>
<td>245</td>
</tr>
<tr>
<td>of foliations</td>
<td>247</td>
</tr>
<tr>
<td>topological object floppy</td>
<td>78, 79</td>
</tr>
<tr>
<td>when rigid geometry</td>
<td>78</td>
</tr>
<tr>
<td>topological polynomial</td>
<td>80, 90</td>
</tr>
<tr>
<td>topological postcritically finite map</td>
<td>78</td>
</tr>
<tr>
<td>topologist’s mapping class group</td>
<td>185</td>
</tr>
<tr>
<td>totally real algebraic number</td>
<td>22</td>
</tr>
<tr>
<td>train track</td>
<td>5–8</td>
</tr>
<tr>
<td>translation surface</td>
<td>195</td>
</tr>
<tr>
<td>tricorn</td>
<td>119, 124, 125, 126</td>
</tr>
<tr>
<td>tuning (Sullivan’s dictionary)</td>
<td>234</td>
</tr>
<tr>
<td>unimodular map</td>
<td>92</td>
</tr>
<tr>
<td>valence (of orbit portrait)</td>
<td>130, 131</td>
</tr>
<tr>
<td>Veech, William</td>
<td>25</td>
</tr>
<tr>
<td>Viana, Marcelo</td>
<td>195, 203, 204</td>
</tr>
<tr>
<td>Voronin, S. M.</td>
<td>53</td>
</tr>
<tr>
<td>(\Omega_f) (Fatou set)</td>
<td>226, 235</td>
</tr>
<tr>
<td>Wada, Masaaki</td>
<td>249</td>
</tr>
<tr>
<td>Wajnryb, Bronislaw</td>
<td>194</td>
</tr>
<tr>
<td>wake</td>
<td>133, 135</td>
</tr>
<tr>
<td>and orbit portrait</td>
<td>134</td>
</tr>
<tr>
<td>wandering domain</td>
<td>235, 235</td>
</tr>
<tr>
<td>web</td>
<td>15t</td>
</tr>
<tr>
<td>word (footnote)</td>
<td>11</td>
</tr>
<tr>
<td>Yoccoz, Jean-Christophe</td>
<td>22, 53, 63, 124</td>
</tr>
<tr>
<td>Yoccoz inequality</td>
<td>51, 234, 239, 239–244</td>
</tr>
<tr>
<td>Zariski tangent space</td>
<td>201</td>
</tr>
<tr>
<td>Zieschang, H.</td>
<td>188</td>
</tr>
<tr>
<td>zipperered rectangle</td>
<td>25</td>
</tr>
<tr>
<td>Zorich, Anton</td>
<td>196</td>
</tr>
</tbody>
</table>