Contents

FORE	EWORD by William Thurston	xi	
FORE	CWORD to volume 1 by Clifford Earle	XV	
PREFACE			
CHAI	PTER 1 The uniformization theorem		
1.1	Two statements of the uniformization theorem	1	
1.2	Subharmonic and harmonic functions	3	
1.3	Rado's theorem	6	
1.4	An exhaustion of X	10	
1.5	Green's functions	14	
1.6	Simply connected compact pieces	15	
1.7	Proof of Theorem 1.1.2	16	
1.8	A first classification of Riemann surfaces	17	
CHAI	PTER 2 Plane hyperbolic geometry		
2.1	The hyperbolic metric	23	
2.2	Curvature of conformal metrics	31	
2.3	Canoeing in the hyperbolic plane	37	
2.4	The hyperboloid model and hyperbolic trigonometry	48	
CHAI	PTER 3 Hyperbolic geometry of Riemann surfaces		
3.1	Fuchsian groups	59	
3.2	The classification of annuli	62	
3.3	The hyperbolic metric on a hyperbolic Riemann surface	69	
3.4	Limit sets and the convex core of a hyperbolic Riemann surface	75	
3.5	Trousers	78	
3.6	Trouser decomposition	84	
3.7	Limit sets and ideal boundaries	87	
3.8	The collaring theorem	89	
3.9	Fundamental domains	95	

CHAP	TER 4 Quasiconformal maps and the mapping theorem	
4.1	Two analytic definitions	111
4.2	Sobolev spaces and the Jacobian formula	117
4.3	Annuli and quasiconformal maps	124
4.4	Normal families of quasiconformal mappings	129
4.5	Geometric characterization of quasiconformal maps	134
4.6	The mapping theorem	149
4.7	Dependence on parameters	153
4.8	Beltrami forms and complex structures	157
4.9	Boundary values of quasiconformal maps	170
СНАР	TER 5 Preliminaries to Teichmüller theory	
5.1	The Douady-Earle extension	184
5.2	Holomorphic motions and Slodkowski's theorem	194
5.3	Teichmüller extremal maps	207
5.4	Spaces of quadratic differentials	220
СНАР	TER 6 Teichmüller spaces	
6.1	Quasiconformal surfaces	235
6.2	Families of Riemann surfaces	239
6.3	The Schwarzian derivative	245
6.4	Teichmüller spaces	254
6.5	Analytic structure of Teichmüller spaces	262
6.6	Tangent spaces and Finsler metrics	266
6.7	Teichmüller spaces are contractible	273
6.8	The universal curve and the universal property	274
6.9	The Bers fiber space	284
6.10	The Kobayashi metric on Teichmüller space	287
6.11	The Bers embedding is open	290
6.12	Simultaneous uniformization and quasi-Fuchsian groups	293
СНАР	TER 7 Geometry of finite-dimensional Teichmüller space	S
7.1	Finite-dimensional Teichmüller spaces	299
7.2	Teichmüller's theorem	301
7.3	The Mumford compactness theorem	302
7.4	Royden's theorem on automorphisms of Teichmüller spaces	307
7.5	Sections of the universal Teichmüller curve	317
7.6	Fenchel-Nielsen coordinates on Teichmüller space	320

7.7	The Petersson-Weil metric	328
7.8	Wolpert's theorem	333
APPE	NDIX A	
A1	Partitions of unity	339
A2	Dehn twists	342
A3	Riemann-Hurwitz	349
A4	Almost-complex structures in higher dimensions	353
A5	Holomorphic functions on Banach spaces and Banach manifolds	359
A6	Compact perturbations	
	A6.1 The Riesz perturbation theorem	371
	A6.2 Riesz perturbation and chain complexes	374
	A6.3 Convolution with the Cauchy kernel is compact	377
A7	Sheaves and cohomology	
	A7.1 Sheaf theory	382
	A7.2 Čech cohomology	385
	A7.3 Exact sequences	389
	A7.4 Line bundles, cohomology, and the first Chern class	392
	A7.5 Resolutions and the Dolbeault-Grothendieck lemma	394
A8	The Cartan-Serre theorem	402
A9	Serre duality	407
A10	The Riemann-Roch theorem for Riemann surfaces	
	A10.0 Introduction	413
	A10.1 Serre duality and genus	413
	A10.2 The degree and first Chern class of a line bundle	415
	A10.3 Proof of the Riemann-Roch theorem	419
A11	Weierstrass points	422
APPE	NDIX B	
B1	Glossary	428
B2	Bibliography	441
INDE	X	446