
Teichmüller Theory and Applications
to Geometry, Topology, and Dynamics

Volume 1: Teichmüller Theory
(1st printing)

Errata and notes: complete as of September 15, 2013

We thank Laurent Bartholdi, Hendrik Chaltin, Sa’ar Hersonsky, Wolf Jung, Andrew Mar-
shall, Curt McMullen, Mohan Ramachandran, Thomas Schmidt, and Seunghee Ye for their
contributions to this list.

Page xix Prerequisites, complex analysis: The new proof of the Koebe 1/4-theorem is in
Chapter 3, not Chapter 4.

Page 14 Professor Mohan Ramachandran has pointed out that the argument of equation
1.4.8 is not quite clear: are we working in De Rham cohomology or singular (or Čech) coho-
mology. In singular or Čech cohomology, the argument is correct, but in de Rham cohomology,
which I have been using mainly in this chapter (in equations 1.4.6 and 1.4.7) this requires a
bit of further argument, since ⇢n is not smooth and doesn’t obviously induce anything on de
Rham cohomology spaces.

There are various ways around this. One is not to use de Rham cohomology at all: replace
equations 1.4.6 and 1.4.7 by saying that the Poincaré dual of � (i.e., intersection with � ) is a
nonzero singular cohomology class, since � intersects �1 transversely in a single point.

Another is to invoke de Rham’s theorem, which is proved in Appendix A7.5. That seems a
little heavy-handed, a clear case of using a sledge hammer to kill a fly.

Another is to show that continuous maps between smooth manifolds do induce homo- mor-
phisms on de Rham cohomology. This is of course true by de Rham’s theorem, but can be
proved much more easily, by approximation (at least on �-compact manifolds), and using par-
titions of unity.

(1) First show that on any �-compact manifold there exist Riemannian metrics that are
controlled at infinity in the sense that there exists ⇢0 > 0 such that any pair of points
distance < ⇢0 apart are joined by a unique geodesic.

(2) Next show that if X and Y are �-compact manifolds with Riemannian metrics, then
every continuous f : X ! Y can be uniformly approximated by C1-maps, and if
the metric of Y is controlled at infinity, then any two approximations within ⇢0/2 are
smoothly homotopic.

Page 16 In the last paragraph before Section 1.7, “Thus our map . . . ” would be better as
“Thus, by the reflection principle, our map . . . .” (The reflection principle says that if U ⇢ H
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is open and f : U ! C is an analytic function such that Im f(z) ! 0 when Im z ! 0, then
f(z) = f(z̄) extends f analytically to U [ U⇤ [ (U \ R). We do not have to assume that f
extends continuously to U \ R.)

Page 58 Line immediately after equation 2.4.28, �detH should be detH. In the same line,
add “with the quadratic form H 7! �detH”:

in these coordinates S with the quadratic form H 7! �detH is E2,1 on the nose.

Page 59 Proposition 3.1.2, end of part 3: “or it has a subgroup of index 2” should be “or
it has an infinite cyclic subgroup of index 2”.

Page 71 Two lines before diagram 3.3.6, f(0) = 0 should be f̃(0) = 0.

Page 74 In the 4th line, �i and�j should be e�i ande�j

Page 82 We probably should have drawn the curve a3 with the opposite curvature.

Page 94 Third line of the proof of Proposition 3.8.9: an inequality sign is missing. “The
band 0Im z < ⇡h” should be “The band 0 < Im z < ⇡h”.

Page 104 Second line after equation 3.9.10: “the isometric circles C(�n) and C(�n)” should
be “the isometric circles C(�n) and C(��1

n )”.

Page 137 The last line of the paragraph following equation 4.5.11 is missing a parenthesis:
⌘(|c0|  ⌘(|c|) should be ⌘(|c0|)  ⌘(|c|)
Page 139 In the third line after Exercise 4.5.7, “Let Uu ⇢ U be a disc of radius r” should
be “Let Du ⇢ U be a disc of radius r”.

Page 140 In the first line of equation 4.5.18, U should be V , and in the second line, V should
be U .

Page 141 The caption of Figure 4.5.6 is missing an end parenthesis: in the third line, “on
f(S2” should be “on f(S2)”.

Page 142 In equation 4.5.25 and in the line immediately above, f(T ) should be f(P ).

Pages 142–143 The part of the proof of Theorem 4.5.4 that follows Lemma 4.5.9 has been
rewritten. We give the new version below:

Two more bits of useful plane geometry. Remember that the derivative
of an a�ne map is constant.

Lemma 4.5.9a If P ⇢ R2 is an equilateral triangle and g : P ! R2 is
a�ne, then

Area P =
p

3
4

(diamP )2 and diam g(P ) �
p

3
2
k[Dg]kdiamP. 4.5.26

Proof The first formula is obvious. For the second, place P with one
vertex at the origin, and so that a vector v with |[Dg](v)| = k[Dg]k |v|
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points into P ; scale v so that it points from the origin to a point of the
opposite side of P . Then |v| � (

p
3/2) diamP , so

diam g(P ) � |[Dg](v)| = k[Dg]k |v| �
p

3
2
k[Dg]kdiamP. ⇤

Let fn : T ! C be the map that is a�ne on each Ti,n and coincides with
f on the vertices of the Ti,n. Thus

Z
Ti,n

k[Dfn]k2 dx dy = k[Dfn]k2 Area (Ti,n) 4.5.27

=
p

3
4

⇣
k[Dfn]k(diamTi,n)

⌘2
 1p

3

⇣
diam fn(Ti,n)

⌘2
.

This finally leads to

Z
T

��[Dfn]
��2

dx dy =
X

i

Z
Ti,n

��[Dfn]
��2

dx dy

 1p
3

X
i

�
diam fn(Ti,n)

�2  1p
3

X
i

�
diam f(Ti,n)

�2

 1p
3

4
⇡

�
h(3)

�2 X
i

Area f(Ti,n) =
4p
3⇡

�
h(3)

�2 Area f(T ).

4.5.28

Note that it is essential that we add the areas of the f(Ti,n), not the areas
of the fn(Ti,n), because the fn may well not be homeomorphisms, and the
images of the triangles by the fn may overlap, as shown in Figure 4.5.7,
where the two triangles shaded light and dark have images that overlap.

Clearly the fn converge uniformly to f as n!1, so the partial deriva-
tives of fn converge weakly to the partial derivatives of f . Equation 4.5.28
shows that the partial derivatives of the fn lie in a fixed ball in L2(T ).
So the partials of f must also be in that ball. Thus the distributional
derivatives of f are locally in L2.

Since f is in CH1, it satisfies the Jacobian formula (see Proposition
4.2.4, with g = 1; we have deg f = 1, since f is an orientation-preserving
homeomorphism). Hence

Area f(T ) =
Z

T
f dx dy. 4.5.29
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Figure 4.5.7 This illustrates the piecewise linear approximation fn to the map

f of Figure 4.5.5. The pale gray curvy lines at right are the original images of

the triangulation under f ; in bold we see the piecewise linear approximations to

those “curvy triangles”. The top two triangles at left have images that overlap on

the right. Thus we cannot simply add the areas of the piecewise linear triangles.

So by equation 4.5.28, for all su�ciently small triangles T ⇢ U we haveZ
T

��[Df ]
��2

dx dy  4p
3⇡

�
h(3)

�2
Z

T
f dx dy. 4.5.30

Thus
��[Df ]

��2  4p
3 ⇡

(h(3))2f locally in L1. So f is K-quasiconformal,
where

K =
4p
3⇡

�
h(3)

�2
. 4.5.31

(Here we use the second analytic definition of quasiconformal maps, Defi-
nition 4.1.5.) Thus we have proved “quasisymmetric =)quasiconformal”,
completing the proof of Theorem 4.5.4. ⇤

Page 145 In Definition 4.5.13, W is not defined. It should be: “ ... if every point of X has
a neighborhood W such that for any three distinct points x, y, z 2W . . . ”

Pages 146–147 This proof has been rewritten:

Proof The direction “labeled quasisymmetry =) quasisymmetry” is
immediate. Every point of U has a neighborhood W such that for every
x, y, z 2W , equation 4.5.35 holds. Let u, v, w be the permutation of x, y, z
such that f(u), f(v), f(w) realizes (f(x), f(y), f(z)). Then

(f(x), f(y), f(z)) =
���� f(u)� f(v)
f(u)� f(w)

����  ⌘

✓���� u� v

u� w

����
◆
 ⌘((x, y, z)).

Now “quasisymmetry =) labeled quasisymmetry”. By the triangle
inequality, if a, b, c are any three distinct complex numbers, we have����b� a

b� c

���� 
����c� a

c� b

���� + 1, 4.5.37
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so that if a triangle has a short side ss, a middle side ms and a long
side ls, then ms/ss gives a good estimate of the skew ls/ss. Moreover, if
(a, b, c) < M , then we can bound the skew in terms of the ratios of any two
sides: M2s1/s2 � (a, b, c).

We will examine three cases, depending one whether [x, z], [x, y], or [y, z]
is the short side.
1. The short side is [x, z]. Then����f(x)� f(y)

f(x)� f(z)

����  (f(x), f(y), f(z))  h((x, y, z))

 h

✓����x� y

x� z

���� + 1
◆

.

4.5.38

2. The short side is [x, y]. Then����f(x)� f(y)
f(x)� f(z)

����  1
(f(x), f(y), f(z))� 1

 1
h�1((x, y, z))� 1

 1

h�1
⇣���x�z

x�y

���� 1
⌘
� 1

4.5.39

3. The short side is [y, z]. This is more delicate, since the short side does
not appear in equation . Lemma 4.5.15 says that when the skew is large,
short sides correspond under f .

Lemma 4.5.15 Suppose that x, y, z is a triangle in U su�ciently small
that Definition 4.5.1 applies, and suppose (f(x), f(y), f(z)) > h(3). Then
(x, y, z) > 3, and the short sides of the triangles x, y, z and f(x), f(y), f(z)
have corresponding labels.

Proof Since h is monotone increasing and

h(3) < (f(x), f(y), f(z))  h((x, y, z)), 4.5.40

x
z

y
y0

f(x)
f(z)

f(y)

f(y0)

Figure 4.5.8 As the point y(t) travels from f(x) to f(y) along the geodesic, the

point y0 follows some path, which must at some point be half as far from x as z.

At that moment, (x, y0, z)  3.

5



3 < (x, y, z)). Suppose [y, z] is the short side of x, y, z, and suppose by
contradiction that [f(x), f(y)] is the short side of f(x), f(y), f(z). Let y(t)
travel along the path in U such that f(y(t)) travels on the geodesic from
f(x) to f(y). Then y(t) starts at x, the center of the circle of radius
d(x, z)/2 around x and ends up at y, outside this circle. At some point in
its travels it must cross the circle, as illustrated in Figure 4.5.8, at some
point y0. Then (x, y0, z) < 3, whereas

(f(x), f(y0), f(z)) � (f(x), f(y), f(z)) > h(3). 4.5.41

This contradicts

(f(x), f(y0), f(z))  h((x, y0, z)) < h(3). 4.5.42

⇤ Lemma

We will subdivide case 3 (where the short side is [y, z]) into two subcases.

30. Assume (f(x), f(y), f(z)) > h(3). Then

2
3


����f(x)� f(y)
f(x)� f(z)

����  3
2
, and

2
3


����x� y

x� z

����  3
2
, 4.5.43

so that ����f(x)� f(y)
f(x)� f(z)

����  9
4

����x� y

x� z

���� . 4.5.44

300. Assume (f(x), f(y), f(z))  h(3). Then (x, y, z)  h(h(3)), so����f(x)� f(y)
f(x)� f(z)

����  (f(x), f(y), f(z))  h((x, y, z))

 h

✓
h(h(3))2

����x� y

x� z

����
◆

.

4.5.45

(The square in (h(h(3))2 comes from the formula M2s1/s2 � (a, b, c) on
the previous page.)

We now have four di↵erent functions of w := |x � y|/|x � z|; the first
is relevant for w > 2 and tends to infinity with w, the second is relevant
for w < 1/2 and tends to 0 with w, and the other two are relevant for
w bounded away from 0 and 1. It is then easy to construct a mono-
tone increasing homeomorphism ⌘ : [0,1) ! [0,1) that is larger than all
four. ⇤

Page 170 There is an error in the 3rd line of equation 4.8.35; the equation should be

fµ(z) =

8><
>:

z if Im z  0
z+↵z̄
1+↵ if 0  Im z  1
z + i1�↵

1+↵ if Im z � 1
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Equation 4.8.36 should be

(fµ)�1(w) =

8><
>:

w if Imw  0
(1+↵)w�↵(1+↵̄)w̄

1�|↵|2 if 0  Imw  Im 1�↵
1+↵

w � i1�↵
1+↵ if Imw � Im 1�↵

1+↵

Page 187 Equation 5.1.12: Replace z⇣ + 1 in the denominator by 1� z⇣.

Page 188 Equation 5.1.14: In the last fraction, the numerator should be 1�|z|2, not 1�|⇣|2.
We have used that the push forward of measures is the transpose of the pullback of functions.

Page 203 2 lines after Proposition 5.2.12, |x|, not sup |x|; 4 lines after Proposition 5.2.12,

“or it has a maximum” should be “or |g| has a maximum”.

Page 209 Line 10: One reader thought q(z)dz2 is a 2-form. It is not a 2-form, it is a

quadratic di↵erential.

Page 214 Perhaps I should have elaborated on the last sentence before Figure 5.3.7:

. . . for each critical point of q0 in Y and each critical trajectory emanating from it, mark

the first intersection of that trajectory with J (if it exists), as illustrated in Figure 5.3.7. (We

will see right after equation 5.3.12 that it does exist.)

Page 215 Two paragraphs are repeated from page 214.

Page 226 A minus sign is missing in line 7: “ . . . defined over (P1⇥P1)�” should be “ . . .

defined over (P1 ⇥ P1)��”.

Page 236 In subsection “Beltrami forms on quasiconformal surfaces”, the second, third, and

fourth sentences should be replaced by

It is tempting to define this as the space of almost-complex structures on S of class L1, i.e.,

complex structures on the fibers of the tangent bundle TS (see Appendix A4). This does not

work in any natural way: S is not naturally a C1 manifold, so it doesn’t have a tangent bundle

TS.

Page 243 Proposition 6.2.7, second line: p : X ! T , not xp : X ! T

In Figure 6.2.1, the primes on some of the T are not clear, and there should be no U on the

right side.
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W

T 0

T

t0

p p

X0

T 0 ⇥W

T 0

pr1

X
X 0

Page 273 An equal sign is missing in equation 6.6.34, and o should be 0:

d(0, µ) = ln
1 + kµk1
1� kµk1

.

Page 278 In equation 6.8.12 and also two lines before the equation, MS should be M(S).
(Note: when we reprint this book, we will change M(S) to Bel(S) and M(S) to bel(S), to be
in keeping with notation to be used in volume 2.)

Page 282 Next to last line of the proof, by “both spaces” we mean the spaces⇣
Q1

⇣
XFS,s0 (⌧) � eFS,s0(⌧)

⌘⌘
and

⇣
Q1

⇣
XFS,s0 (⌧)

⌘⌘
of quadratic di↵erentials.

Page 293–294 There is some confusion here with � and G. In the first line of Section 6.12,
� should be omitted, to avoid confusion with the � of Notation 6.12.1; i.e., replace “groups
� ⇢ Aut(P1)” by “subgroups of Aut(P1)”.

Also, 6.12.4 could be written, equivalently, as QF : TX ⇥ TX⇤ ! Rep(G).

Page 306 The comment (after Exercise 7.3.2) that “I don’t know how to continue the proof
using this approach” reflected my ignorance. Curt McMullen points out that it is known that
there is a constant C(g) such that on every Riemann surface of genus g there is a maximal
multicurve whose longest curve has length  C(g). See Chapter 5 of Peter Buser’s book
Geometry and Spectra of Compact Riemann Surfaces, where C(g) is called “Bers’ constant”.

Page 309 In Proposition 7.4.4, we should have given the domain and codomain of f : “define
the function f : R ! C by . . . ”

Pages 310–311 A number of changes starting with the text immediately after equation
7.4.15, and continuing through equation 7.4.21. The text should read as follows. Note that in
this version there is no equation 7.4.19.
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is bounded independently of t. If '(0) = 0 this is obvious, so suppose
'(0) 6= 0, and to lighten notation set A2 := t'(0), and R := |1/A|. Make
the change of variables z = Au; the integral becomesZ

D

���� z

z2 + t'(0)

���� |dz2| = |A|
Z

DR

���� u

u2 + 1

���� |du|2, 7.4.15

where DR is the disc of radius R. This integral is well defined for all A 6= 0,
and tends to 0 as A ! 1. When A ! 0, we can break up the integral
into the part over D2, which is some constant C, and the remainder, where
|u2 + 1| > |u|2/2. Then in polar coordinates,

|A|
Z

2<|z|<R

���� u

u2 + 1

���� |du|2  2⇡|A|
Z R

2

2r
r2

r dr = 4⇡|A|
✓

1
|A| � 2

◆
.

7.4.16
Clearly this is bounded as A! 0.

Seeing that the third integral is O(t) is easier:
���⇣�

z2 + t'(0)
�
� z2

⌘⇣
 (z)�  (0)

⌘���  2|t|
����'(0) 1(z)

z

���� , 7.4.17

which is integrable.
So it is enough to study the first integral. If '(0) = 0, the integral

obviously vanishes, so suppose '(0) 6= 0.
Again set A2 = t'(0), make the change of variables z = Aw, and set

R = 1/|A|, to findZ
D

⇣
(z2 + t'(0))� z2

⌘
 (0) |dz|2

=  (0)'(0) t

Z
DR

�
(w2 + 1)� w2

�
|dw|2.

7.4.18

The integrand is bounded by 2, so the integral over the unit disc is in O(t),
and in finding the contribution of the integral to terms in t ln 1/|t| we may
consider only the integral over DR � D1. Moreover, the integral is real,
since the imaginary part of the integrand has opposite signs at complex
conjugate points.

Set w := rei✓. A bit of Euclidean geometry will show that����Re
�
(w2 + 1)� w2

�
� sin2 2✓

r2

����  4
r4

, 7.4.20

and since Z
DR�D1

1
r4

r dr d✓  ⇡ 7.4.21

it is enough to find the contribution of sin2 2✓
r2 to the coe�cient of t ln 1

|t| .

9



Page 327 In equation 7.6.9,
h� y

y
should be

h� y

h
and

h + y

y
should be

h + y

h
.

In Figure 7.6.8, the primes aren’t very clear. The T1 and T2 on the left should each have a
single prime; those on the right should have double primes.

Page 342 Period missing at the end of the first sentence. Line 2: isotopy, not homotopy.
Beginning of second paragraph: R/Z, not R/Z. Second paragraph: replace

“Let � : R/Z ! S be a smooth parametrized simple closed curve on S.”
by
“Let � : R/Z ! S be a smooth embedding, so that �(R/Z) is a parametrized simple closed

curve on S.”

Page 343 Lemma A2.3: f � �0 = �1, not f � �1 = �2. Proof of Lemma A2.3, 4th line: “may
intersect �0(S1)”, not “may intersect �0”

Page 344 Figure A2.1: To be consistent with the text, the curve labeled I1 should be I0,
and I2 should be I1. In line 3 of the caption, I2 should be I1, and in line 4, �2 should be �1.

Page 352 Formula A3.11 is missing parentheses; it should be

0! H0(�i) ! H0(Xi�1)�H0(Ti) ! H0(Xi) !
0

!
0

H1(�i)
Z

! H1(Xi�1)�H1(Ti)
Z2

! H1(Xi) ! 0.

A parenthesis is missing from the last line of the proof, as well; “dimH1(Xi) = dim(H1(Xi�1)+
1” should be “dimH1(Xi) = dim(H1(Xi�1)) + 1”.

Page 354 Equation A4.5: The left side should be µJ(i(a + ib)⌦ x), not µJ(i(a + ib)⌦
Page 355 In equation A4.10, J is not the J of equation A4.3. The paragraph should be
replaced by:

A better way to say this is to consider the open subset

K(TM) ⇢ GrC(C⌦R TM)

of pairs (x,Kx) with x 2 M and Kx an n-dimensional C-subspace of C ⌦R TxM such that
Kx \Kx = {0}. Since the Grassmanians form a C1 bundle of complex manifolds, K(TM) is
also a C1 bundle of complex manifolds over M . The space Sk(M,K(TM)) of Ck-sections of
the bundle K(TM) over M is the space of almost-complex structures on M of class Ck.

(Note that we have replaced “family” by “bundle” in two places.)

Page 357 Three lines before equation A4.16: K ⇢ C⌦ TM should be K ⇢ C⌦R TM .

Page 386 Line 3, missing word: “because they are by far . . . .”

Page 392 Third line of Section A7.4: “more real than”, not “more real that”.

Page 392 End of third paragraph of Section A7.4: H(X,O⇤X), not H(X,O⇤X)

Page 397 The proof for proposition A7.5.6 is incorrect. Here is a corrected version: Proof
Choose an exhaustion V1 ⇢ V2 ⇢ · · · ⇢ U of U by open sets such that each Vi is relatively
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compact in Vi+1. Let Ui be the union of Vi and all the compact components of U � Vi; then
every component of C�Ui contains points that are not in U . Further, choose C1 functions hi

on C that are identically 1 in Ui and identically 0 on C� Ui+1.
Given ↵ 2 A0,1(U), by equation A7.5.9 we can find �n 2 A0,0(U) such that ��n = hn. Since

we can write

�n := �0 + (�1 � �0) + · · ·+ (�n � �n�1), A7.5.13

it is tempting to set � = �0 +
P1

k=1(�k+1 � �k); unfortunately, the series does not converge.
Instead, note that �k+1 � �k is analytic on a neighborhood of Uk, and every component of
C � Uk contains points not in U . Thus by the Runge approximation theorem, there exist
rational functions pk analytic in U such that

sup
z2Uk

|�k+1(z)� �k(z)� pk(z)|  1
2k

A7.5.14

Now the series

� := �0 + (�1 � �0 � p0) + �2 � �1 � p1) + · · · A7.5.15

converges uniformly on compact subsets of U , and � satisfies @̄� = ↵. ⇤

Page 412 Theorem A9.14: Here X is supposed to be a complex manifold of complex di-
mension n.

Page 416 Two lines after eq. A10.24: replace “which is obviously be the case of the sets U
and V above” by “which is the case for locally constant sheaves”.

Page 417 Last line: neighborhoods Ui, not Uij.

Page 419 Corollary A10.2.6: O(�div(s)) should be O(+div(s)).

Page 445 Two references were omitted:
[99] A. Weil, Modules des surfaces de Riemann, Bourbaki seminar 168 (1957–1958).
[101] S. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Annals

of Mathematics, 117, no. 3 (1983), 207–234.
There is no reference [100].

Index entries There should be entries for
barycenter, page 185
foliation, 209
H (upper halfplane), 6
Hawaiian earring, 388
mating, 294
Poincaré duality: the italicized entry should be 410, not 409.
pullback of Beltrami forms, 161, 169
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