
6
Teichmüller spaces

Now we introduce the main actors of this book: Teichmüller spaces.
Although the applications we will consider mainly use finite-dimensional
Teichmüller spaces, we discuss them in full generality. This makes our job
somewhat harder; we do it because we hope that theorems involving finite-
dimensional Teichmüller spaces will have analogs for infinite-dimensional
Teichmüller spaces. In particular, we hope that Thurston’s theorem on
the topological characterization of rational functions might be extended
to mappings that are not postcritically finite. Indeed, in one case, David
Brown [22] has proved such a result.

Thus we will treat finite-dimensional Teichmüller spaces, associated to
Riemann surfaces of finite type, as a special case of infinite-dimensional
Teichmüller spaces, associated to general Riemann surfaces.

Remark This view, mainly represented by the work of Ahlfors and Bers,
is quite analytical. The alternative would be to see finite-dimensional
Teichmüller spaces as moduli spaces of compact complex curves, generaliz-
ing to moduli spaces of higher-dimensional compact complex manifolds, for
instance surfaces of general type. This view was championed by Grothen-
dieck [51], who used techniques from complex analytic geometry and alge-
braic geometry, and also by Earle and Eells; their paper [37] is still probably
the best place to start learning the theory.

The situation is like that of SL2(Z), which can be viewed as either the
genus one case of Teichmüller modular groups or as the first of the sequence
SL2(Z), SL3(Z), . . . . These two views diverge rapidly and lead to quite
different descriptions of SL2(Z). Similarly, the two views of Teichmüller
theory lead to quite different treatments of finite-dimensional Teichmüller
spaces, reflecting which constructions one wants to be able to carry over to
the more general setting.

I used to favor the Grothendieck-Earle-Eells approach. In [59] I gave
a construction inspired by this view, using smooth, almost complex struc-
tures and the Serre duality theorem, and never mentioning quasiconformal
mappings. The Bers simultaneous uniformization theorem, key to the Bers
approach, seemed to me unnatural and even unpalatable; I could not see
why anyone would ever want this result. Sullivan’s no wandering domains
theorem showed me that I was wrong; I have come to see that the simul-
taneous uniformization theorem is essential in proving Thurston’s hyper-
bolization theorem for 3-manifolds that fiber over the circle, presented in
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volume 2. Bers’s theorem still seems unnatural to me, just as the paintings
of Hieronymus Bosch seem unnatural. But I have come to see beauty as
well as utility in an approach that first seemed to me simply horrible.

6.1 Quasiconformal surfaces

A Teichmüller space is the set of Riemann surfaces of a given quasiconformal
type. There is one Teichmüller space for every quasiconformal surface: we
speak of the “Teichmüller space modeled on S”, where S is a quasiconformal
surface. This requires knowing what a quasiconformal surface is.

A quasiconformal surface S is a topological surface with a Riemann-
surface structure; two Riemann surface structures on S define the same
quasiconformal structure if the identity map between them is quasicon-
formal. If S1, S2 are two quasiconformal surfaces, a map f : S1 → S2 is
quasiconformal if it is a quasiconformal homeomorphism for one, hence all,
analytic structures on each of S1 and S2. In particular, by definition all
quasiconformal maps are isomorphisms.

If X is a Riemann surface, we denote by qc(X) its equivalence class. By
Rado’s theorem, all connected quasiconformal surfaces are σ-compact.

For compact surfaces, a quasiconformal structure carries little informa-
tion.

inProposition 6.1.1 If two compact quasiconformal surfaces S1 and S2

are homeomorphic, then they are isomorphic as quasiconformal surfaces.

Proof We may take S1 = qc(X1) and S2 = qc(X2). In dimension 2,
homeomorphic differentiable surfaces are diffeomorphic (for compact sur-
faces, this follows from the classification of surfaces), so X1 and X2 are
diffeomorphic, and on a compact surface a diffeomorphism is quasiconfor-
mal. ¤

Proposition 6.1.1 is wildly wrong for noncompact surfaces. Already C
and D are homeomorphic, but not isomorphic as quasiconformal surfaces
(see Exercise 4.3.7). More generally, the quasiconformal surface gotten by
removing a point from a compact Riemann surface and the quasiconformal
surface gotten by removing a disc from the same surface are homeomorphic,
but they are not isomorphic as quasiconformal surfaces. But the situation
can get much wilder: when the fundamental group of a surface is infinitely
generated, there are uncountably many distinct quasiconformal surfaces
that are homeomorphic.

Example 6.1.2 Let Z be {0, 1, 2, 3, . . . }. Then there are uncountably
many different quasiconformal surfaces all homeomorphic to C−Z. Figure



236 Chapter 6. Teichmüller spaces

6.1.1 shows how to construct one such surface. Since (Theorem 3.5.8) we
can make the lengths l1, l2, . . . anything we like, there are uncountably
many such surfaces.
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Figure 6.1.1 How to construct one quasiconformal surface homeomorphic to

C−Z. The shaded oval at left is homeomorphic to the trouser at top right, with

cuffs of length 0 at 0 and 1 and a waist of length l′1. The surface drawn with

slanted lines has boundary l1 and l2 and a puncture point at 2; it is homeomorphic

to the second trouser at right, which we may think of as having cuffs of lengths

l′1 and l′2 and a waist (at the puncture point 2) of length 0 . . . . (Note that

although at left we draw the lengths l1, l2, . . . using the Euclidean metric, so that

l1 < l2 < l3 . . . , these geodesics are really with respect to the hyperbolic metric of

C−Z; they are all more or less the same length.) This gives a recipe for creating

a quasiconformal surface topologically identical to C−Z. Since we can make the

lengths l′1, l
′
2, . . . whatever we like, we can create uncountably many such surfaces.

4

Beltrami forms on quasiconformal surfaces

We now need to define the space of Beltrami forms on a quasiconformal
surface S. It is tempting to define this as the unit ball in L∞∗ (TS, TS)
(see Definition 4.8.11 and equation 4.8.18). But this does not work in any
natural way. The problem is that S is not naturally a C1 manifold, so it
doesn’t have a tangent bundle TS. It does have a “tangent bundle almost
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everywhere”, and since Beltrami forms are only defined almost everywhere,
this is good enough. However, setting up the machinery to make this precise
takes more effort than the dodge we will adopt.

inDefinition 6.1.3 (Beltrami form on a quasiconformal surface)
A Beltrami form on a quasiconformal surface S is represented by a pair(
(ϕ :S → X), µ

)
where X is a Riemann surface, ϕ is an isomorphism

S → qc(X), and µ is a Beltrami form on X, i.e., µ ∈ M(X). Two pairs(
(ϕ1 :S → X1), µ1

)
and

(
(ϕ2 :S → X2), µ2

)
represent the same element

of the space M(S) of Beltrami forms on S if

µ2 = (ϕ1 ◦ ϕ−1
2 )∗µ1. 6.1.1

This is just a disguised way of “identifying” M(S) with M(X), as the
following statement makes clear.

inProposition and Definition 6.1.4 (Analytic structure on the
space of Beltrami forms)

1. Let S be a quasiconformal surface, X a Riemann surface, and

ϕ : S → qc(X) an isomorphism of quasiconformal surfaces. Then

the mapping M(X)→M(S) given by

µ 7→
(
(ϕ :S → X), µ

)
6.1.2

is bijective.

2. If we make M(S) into a Banach analytic manifold by requiring

that the identification 6.1.2 be an isomorphism, then this struc-

ture is independent of the choice of ϕ : S → qc(X).

Proof 1. By Definition 6.1.3, we know that µ1 and µ2 map to the
same point if (ϕ ◦ ϕ−1)∗µ1 = µ2, which evidently means µ1 = µ2. This
shows injectivity. For surjectivity, suppose m ∈ M(S) is represented by(
(ϕ1 :S → X1), µ1

)
for some ϕ1, X1, µ1. Then it is also represented by(

(ϕ :S → X), (ϕ ◦ ϕ−1
1 )∗µ1

)
.

2. Again using Definition 6.1.3, we need to know that

(ϕ ◦ ϕ−1
1 )∗ :M(X1)→M(X) 6.1.3

is an analytic isomorphism. That is the content of Proposition 4.8.17. ¤

Remark If M(S) is just M(X) in light disguise, why bring it in at all?
The reason is that M(X) has a distinguished point (the point 0); M(S)
does not. When we work in M(X), we are studying complex structures
where a particular background complex structure has been chosen, namely,
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that of X. When we work in M(S), we are working with the same com-
plex structures but there is now no distinguished background structure.
Whenever we make an argument about M(X) that is really about M(S),
we need to show that the argument does not depend on the choice of base
point, i.e., the background complex structure.

However, this advantage ofM(S) overM(X) is phony: we won’t be able
to avoid making these arguments. For instance, part 2 of Proposition and
Definition 6.1.4 asserts that M(S) has a complex structure that does not
depend on any background structure, but we had to go back to Proposition
4.8.17 to prove it. But we will be able to avoid referring to the base point or
background structure in the statements ; I hope this results in conceptual
clarification. 4

Ideal boundaries of quasiconformal surfaces

Recall (Proposition and Definition 3.7.1) the definition of the ideal bound-
ary of a hyperbolic Riemann surface. Quasiconformal surfaces also have
ideal boundaries. It follows from Proposition 6.1.5 that the ideal bound-
ary of a Riemann surface X depends only on the underlying quasiconfor-
mal surface: every quasiconformal surface S = qc(X) has ideal boundary
I(S) = I(X).

inProposition and Definition 6.1.5 (Ideal boundary of a quasicon-
formal surface)

1. If X and Y are Riemann surfaces and f : X → Y is quasiconfor-

mal, then f extends to a homeomorphism f̄ : X → Y .

2. If S is a quasiconformal surface and X is a Riemann surface such

that S = qc(X), then the ideal boundary of S is I(S) = I(X). If

Y is another Riemann surface such that S = qc(Y ), then there

is a quasiconformal mapping X → Y , which by part 1 induces

a homeomorphism I(X) → I(Y ), so that I(S) = I(Y ), and the

ideal boundary is well defined.

Proof 1. This follows from Proposition 4.9.1. Let X̃ and Ỹ be the
universal covering spaces of X and Y . Choose isomorphisms ϕX : X̃ → D
and ϕY : Ỹ → D. There are then Fuchsian groups ΓX , ΓY such that ϕX , ϕY
induce isomorphisms X → D/ΓX and Y → D/ΓY . The homeomorphism
f lifts to a quasiconformal homeomorphism f̃ : D → D with the property
that ΓY f̃ = f̃ΓY . By Proposition 4.9.1, f̃ extends to a homeomorphism
f̃ : D → D. Moreover, f̃ maps the limit set of ΓX to the limit set of ΓY ,
and induces a homeomorphism

f :
(
D− ΛΓX

)
/ΓX →

(
D− ΛΓY

)
/ΓY . 6.1.4


