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Preliminaries to Teichmüller theory

In this chapter we present a number of results that play an essential role in
our theory of Teichmüller spaces:

1. The Douady-Earle extension theorem and the associated reflection
theorem, Section 5.1.

2. Slodkowski’s theorem on extensions of holomorphic motions, Section
5.2.

3. Teichmüller’s theorem on extremal mappings between Riemann sur-
faces, Section 5.3.

4. Several results concerning spaces of quadratic differentials in Section
5.4, more particularly, the duality theorem, Theorem 5.4.12.

Each is of great interest in its own right.

5.1 The Douady-Earle extension

Theorem 4.9.5 says that every quasisymmetric homeomorphism f : R→ R
extends to a quasiconformal homeomorphism H → H. In this section we
describe an especially nice such extension, due to Douady and Earle [30],
which has a crucial naturality property. At the end of this section we will
deduce from it a reflection theorem (Theorem 5.1.13) due to Earle and Nag
[46].

It is more convenient to deal with quasisymmetric maps f : S1 → S1.
We already know (Definition 4.5.13) that a map f : X → Y for any met-
ric spaces X and Y is L-quasisymmetric if there exists a homeomorphism
η : [0,∞)→ [0,∞) such that for any distinct points a, b, c ∈ X we have∣∣∣∣f(a)− f(b)

f(a)− f(c)

∣∣∣∣ ≤ η

(∣∣∣∣a− b

a− c

∣∣∣∣) . 5.1.1

We also have Definition 4.9.3 of R-quasisymmetric maps. The following
exercise asks you to show that they are equivalent. It is not very different
from the equivalence of parts 2 and 3 in Theorem 4.9.19.

Exercise 5.1.1 Let f : S1 → S1 be a homeomorphism. Show that the
following two conditions are equivalent:

1. f is L-quasisymmetric with modulus η.
2. There exists a constant M such that for any a ∈ S1, if the analytic

isomorphism γ1 : D→ H maps∞ to a and the analytic isomorphism
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γ2 : D → H maps f(a) to ∞, then the function g : R → R given by
g := γ2 ◦ f ◦ γ1 satisfies

1
M
≤ g(x + t)− g(x)

g(x)− g(x− t)
≤M. ♦ 5.1.2

By extension, we will say that a homeomorphism f : S1 → S1 is R-
quasisymmetric with modulus M if it satisfies the second condition of Ex-
ercise 5.1.1 with constant M . Let QSM (S1) denote the space of homeo-
morphisms f : S1 → S1 that are R-quasisymmetric with modulus M ; recall
from Definition 4.7.3 that QCK(D) denotes the space of K-quasiconformal
homeomorphisms D→ D.

inTheorem 5.1.2 (The Douady-Earle extension theorem) For any

M ≥ 1, there exist K ≥ 1 and a map Φ : QSM (S1)→ QCK(D) such that

the K-quasiconformal map Φ(f) extends f and for every γ1, γ2 ∈ AutD,

Φ(γ1 ◦ f ◦ γ2) = γ1 ◦ Φ(f) ◦ γ2. 5.1.3

The proof will be completed by the end of the section. To lighten nota-
tion, we will denote Φ(f) by f̂ .

The conformal barycenter

In this section we will use measures (denoted µ) throughout. Beltrami
forms will appear only in the last part, and then not explicitly. Recall
that an atom of a measure µ is a point with mass: a point p such that
µ({p}) ≥ 0.

Below, γ∗ denotes “push forward” by γ, in whatever setting is appropri-
ate: γ∗µ is the push forward of the measure µ (direct images of measures
are always well defined), and γ∗~ξ is the push forward of the vector field ~ξ,
only well defined because γ is an isomorphism.

inProposition and Definition 5.1.3 (Conformal barycenter)

1. There exists a unique mapping µ 7→ ~ξµ from the space of prob-

ability measures on S1 to the space of C∞ vector fields on D,

having the following two properties:

a. ~ξµ(0) =
∫

S1 ζ µ(dζ).

b. For every γ ∈ AutD, we have ~ξγ∗µ = γ∗~ξµ.

2. If µ has no atoms, then ~ξ has a unique 0 in the interior of D,

called the conformal barycenter of µ and denoted B(µ).
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Proof 1. Observe that if γ is a rotation, then our formula for ~ξµ(0)
guarantees that

γ∗~ξµ(0) = ~ξγ∗µ(0). 5.1.4

Part 1 follows: for any point a ∈ D, move a to 0 by an element γ ∈ AutD
and define

~ξµ(a) := [Dγ(a)]−1~ξγ∗µ(0). 5.1.5

Any γ1 ∈ AutD with γ1(a) = 0 can be written γ1 = δ ◦ γ, where δ is a
rotation, so

[Dγ1(a)]−1(~ξ(γ1)∗µ(0)) =
(
[Dδ(γ(a))][Dγ(a)]

)−1(
δ∗~ξγ∗µ(0)

)
= [Dγ(a)]−1

(
δ−1
∗ δ∗~ξγ∗µ(0)

)
.

5.1.6

Thus the vector field ~ξµ is well defined. It is then straightforward to give
an explicit formula for ~ξµ:

~ξµ(z) =
(
1− |z|2

) ∫
S1

ζ − z

1− zζ
µ(dζ). 5.1.7

(When we integrate with respect to a measure µ and need to specify the
variable of integration x, we write µ(dx) – “µ measures little pieces of x” –
rather than the more standard dµ(x).)

2. We can use equation 5.1.7 to compute the Jacobian of ~ξµ at 0. First,
compute

~ξµ(z) =
(
1− |z|2

) ∫
S1

(ζ − z)(1 + zζ + (zζ)2 + · · · )µ(dζ)

= ~ξµ(0)− z + z

∫
S1

ζ2µ(dζ) + o(|z|).
5.1.8

This gives the partial derivatives

∂~ξµ

∂z
(0) = −1,

∂~ξµ

∂z
(0) =

∫
S1

ζ2µ(dζ). 5.1.9

Finally (using Definition 4.1.5), the Jacobian is∣∣∣∣∣∂~ξµ

∂z
(0)

∣∣∣∣∣
2

−
∣∣∣∣∣∂~ξµ

∂z
(0)

∣∣∣∣∣
2

= 1−
∫

S1×S1
ζ2
1 ζ2

2
µ(dζ1) µ(dζ2)

=
1
2

∫
S1×S1

∣∣ζ2
1 − ζ2

2

∣∣2 µ(dζ1)µ(dζ2),

5.1.10

which is strictly positive, since∫
S1
|ζ|4µ(dζ) =

∫
S1

µ(dζ) = 1. 5.1.11
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In particular, all the zeros of ~ξµ have index 1.
Moreover, we can easily see that ~ξµ points inward near the boundary

∂D. Indeed, if |z| is close to 1 and γ(ζ) = (ζ − z)/(1 − zζ), then γ∗µ
is approximately a unit mass at −z/|z|. Thus ~ξγ∗µ(0) is approximately
−z∂/∂z, and this vector points inwards when moved back to z. The sum
of the indices of the zeros of ~ξµ is 1 by the Poincaré-Hopf index theorem,
so ~ξµ has a unique zero. ¤

Remark 5.1.4 The proof usually works even if µ has atoms; it fails only
when µ has an atom with weight ≥ 1/2. In that case, the proof fails at two
places: first, the integral, which should be positive to see that the index
is 1, can vanish; second, the vector field does not point inwards near the
boundary. But the conformal barycenter exists anyway in D, and is the
atom of weight ≥ 1/2, except in the case where there are two atoms at
distinct points of weight 1/2; in that case the vector field ~ξµ vanishes on
the geodesic joining the points, and there is no conformal barycenter. 4

Proof of the Douady-Earle extension

To every point z ∈ D we can associate the harmonic measure ηz of z on
S1:

ηz :=
1
2π

1− |z|2
|zζ + 1|2 |dζ|. 5.1.12

As illustrated by Figure 5.1.1, this harmonic measure associates to every
arc the normalized angle under which it is seen from z using the hyperbolic
metric.

z

I

2π ηz(I)
Figure 5.1.1 To find the harmonic

measure ηz(I), draw the hyperbolic

geodesics from a point z ∈ D

to the endpoints of an interval I.

inDefinition 5.1.5 (Douady-Earle extension) Let B denote the
conformal barycenter defined in Proposition and Definition 5.1.3. The
Douady-Earle extension of a continuous mapping f : S1 → S1 is the
map Φ(f) : D→ D given by Φ(f)(z) := B(f∗ηz).

To lighten notation, we will usually denote Φ(f) by f̂ . The map Φ is
defined for all continuous maps f : S1 → S1 if f∗ηz has no atoms. But if f
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collapses some interval I to ζ, then f∗ηz will have an atom of weight ≥ 1/2
at ζ for z in the convex hull Î of I, so that f̂ is still defined but maps Î to ζ.
The bad case, where f∗ηz is the sum of two atoms of weight 1/2, does not
occur: a continuous map cannot collapse the circle to two distinct points.
So Φ is defined on the space C(S1, S1) of continuous maps from the circle
to the circle, but we must consider f̂ as a map D→ D.

inProposition 5.1.6 (Properties of the Douady-Earle extension)

1. The Douady-Earle extension f̂ extends continuously to D, agrees

with f on the boundary, and is real analytic on f̂−1(D).

2. The map Φ : C(S1, S1)→ C(D,D) is continuous, using the topol-

ogy of uniform convergence on the circle in the domain and the

topology of uniform convergence on D in the codomain.

3. The map f̂ has the desired naturality: if γ1, γ2 ∈ AutD, then

γ1 ◦ f̂ ◦ γ2 = ̂γ1 ◦ f ◦ γ2. 5.1.13

The restriction “on f̂−1(D)” in part 1 avoids the boundaries ∂Î of in-
tervals I collapsed to points.

Proof Parts 2 and 3 are obvious. The first statements of part 1, that
f̂ extends continuously to D and that it agrees with f on the boundary,
follow from the fact that ηz tends to the δ-mass at x when z tends to a
point x in the boundary of the disc. Now we will see that f̂ is real analytic
on f̂−1(D), i.e., at points where f̂(z) is the zero of the vector field ξf∗ηz

.
The graph of f̂ , i.e., the locus of equation f̂(z) = w, is (by equations 5.1.7
and 5.1.12) defined implicitly by the equation F (z, w) = 0, where

F (z, w) =
1
2π

∫
S1

f(ζ)− w

1− wf(ζ)
1− |ζ|2
|z − ζ|2 |dζ|. 5.1.14

Since F is real analytic, so is f̂ . Note that we already know, from the
uniqueness of the conformal barycenter, that the derivative of F with re-
spect to w is a non-singular 2×2 matrix; but in any case we will later need
to compute the derivative of f̂ , which requires the inverse of this matrix;
this derivative is computed in equation 5.1.17. ¤ Proposition 5.1.6

So far we have proved all of the Douady-Earle extension theorem except
for the statement that the extended map f̂ is K-quasiconformal, where K

depends only on the quasisymmetric modulus M of f .

inProposition 5.1.7 If f : S1 → S1 is a homeomorphism, then f̂ is a

diffeomorphism.


