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Quasiconformal maps and the mapping

theorem

Quasiconformal maps form a branch of complex analysis. I found the sub-
ject difficult to learn, mainly because I had a hard time appreciating how
smooth the maps are. They are somehow rather magical, with properties
that seem contradictory. They are smooth enough that much of calculus
holds: the chain rule and the integral formulas for lengths and areas. They
are rough enough that conjugating by them can change derivatives at fixed
points. They are homeomorphisms, but have an affine structure: there
are barycenters of quasiconformal mappings, and canonical “straight lines”
joining pairs.

Our treatment is somewhat different from the standard one: it is strongly
colored by a prejudice in favor of soft analysis wherever possible. Thus we
avoid the words almost everywhere when we can, and more generally we
avoid evaluating functions unless they are continuous: measurable functions
should appear only under integral signs. Distributions are in, differentiabil-
ity a.e. is out. Differential forms are in, densities are out. Approximations
by C1 functions are in, absolute continuity on lines is out.

4.1 Two analytic definitions

There are several possible definitions of quasiconformal mappings, and it is
not so easy to see that they are equivalent. In this section we will give the
best definition for our present purposes; in Section 4.5 we will give another
and will propose three more in exercises.

The great virtue of Definition 4.1.1 below is that it is well adapted to the
proof of the mapping theorem, Theorem 4.6.1. However, it has drawbacks:
although inverses and compositions of quasiconformal maps are quasicon-
formal, this does not follow easily from this analytic definition. Nor does
this definition make it easy to check whether various explicit mappings are
quasiconformal.

Remark Definition 4.1.1 involves distributional partial derivatives, often
called weak derivatives. I dislike this misleading name, which suggests that
a weak derivative carries inadequate information. Exactly the opposite is
true: distributional derivatives carry all the information that a derivative
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112 Chapter 4. Quasiconformal mappings

should carry, unlike derivatives almost everywhere, which often overlook
essential features. See Example 4.1.8 for a striking illustration. 4

inDefinition 4.1.1 (Quasiconformal map: first analytic definition)
Let U, V be open subsets of C, take K ≥ 1, and set k := (K−1)/(K+1),
so that 0 ≤ k < 1. A mapping f : U → V is K-quasiconformal if it is
a homeomorphism whose distributional partial derivatives are in L2

loc

(locally in L2) and satisfy ∣∣∣∣∂f∂z̄
∣∣∣∣ ≤ k ∣∣∣∣∂f∂z

∣∣∣∣ 4.1.1

in L2
loc, i.e., almost everywhere.

A map is quasiconformal if it is K-quasiconformal for some K.

inDefinition 4.1.2 (Quasiconformal constant) The smallest K such
that f is K-quasiconformal is called the quasiconformal constant of f ,
denoted K(f).

The quasiconformal constant is sometimes called the quasiconformal
norm and sometimes the quasiconformal dilatation.

The constant K measures how near a mapping is to being conformal, i.e.,
analytic; the closerK is to 1, the more nearly conformal aK-quasiconformal
map is. This is not the only possible definition of what is means to be
“nearly conformal”, but it is the most useful one, because good theorems
are available for it.

The meaning of inequality 4.1.1 is best understood if f ∈ C1(U). Then
the derivative [Df(z0)] is an R-linear map, given by the Jacobian matrix,
but it is easier to use complex notation:

[Df(z0)](u) =
∂f

∂z
(z0)u+

∂f

∂z̄
(z0)ū. 4.1.2

If we write a real linear transformation T : C→ C as T (u) = au+ bū, so
that a = ∂T

∂u and b = ∂T
∂ū , then we will see below that the determinant and

norm of T are given by the important formulas

detT = |a|2 − |b|2 , ‖T‖ = |a|+ |b|. 4.1.3

Remark 4.1.3 It follows from equation 4.1.3 that if T preserves orienta-
tion, then |∂T∂ū | < |∂T∂u |, and if T reverses orientation, then |∂T∂ū | > |∂T∂u |. (If
the two sides are equal, then T is not an isomorphism, since it is neither
orientation preserving nor orientation reversing.) 4
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Both formulas follow from computing the inverse image of the unit circle,
i.e., from computing the real curve of equation |T (u)| = 1. Write

u := reiθ, a := |a|eiα, and b := |b|eiβ . 4.1.4

The equation |T (u)| = 1 becomes in polar coordinates∣∣∣∣(|a|+ |b|) cos
(
θ +

α− β
2

)
+ i(|a| − |b|) sin

(
θ +

α− β
2

)∣∣∣∣ =
1
r
. 4.1.5

This is the equation of an ellipse, with

– minor axis at polar angle
β − α

2
of semi-length

1
|a|+ |b| , and

– major axis at polar angle
β − α+ π

2
of semi-length

1
||a| − |b|| .

This is illustrated in Figure 4.1.1. In particular, ‖T‖ = |a| + |b| (the
inverse of the semi-length of the minor axis), and detT = |a|2 − |b|2 (up to
sign, the ratio of the area of the unit circle to the area of its preimage).

Vf

β−α
2

|a|+|b|
1

z0

U

1

T=[Df(z0)]
Tu = au+bu-

f(z0)

|a|−|b|
1

Figure 4.1.1 If f is K-quasiconformal and of class C1 (so that its derivative

exists), then its derivative at z0 takes the the ellipse on the left to the unit circle

on the right.

Finally, the ratio of the axes of the ellipse is

|a|+ |b|
|a| − |b| ≤

1 + k

1− k = K. 4.1.6

Now set a := ∂f
∂z (z0), b := ∂f

∂z̄ (z0) and write equation 4.1.2 in the form
[Df(z0)]u = au + bū. Then if f ∈ C1(U) is K-quasiconformal, the condi-
tion 0 ≤ k < 1 in Definition 4.1.1 implies that det[Df(z0)] is everywhere
positive, so that f preserves orientation; see Remark 4.1.3.
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This gives the explanation we were after: a K-quasiconformal mapping
of class C1 is an orientation-preserving diffeomorphism whose derivative
maps infinitesimal circles to infinitesimal ellipses with eccentricity at most
K (i.e., the ratio of the lengths of the axes of the ellipses is bounded by K).

Sometimes we know f : U → V in real terms:

f(x+ iy) = u(x, y) + iv(x, y). 4.1.7

Computing the operator norm
∥∥[Df ]

∥∥ is then a bit unpleasant; the easy
thing to compute is∣∣[Df ]

∣∣2 :=
(
∂u

∂x

)2

+
(
∂u

∂y

)2

+
(
∂v

∂x

)2

+
(
∂v

∂y

)2

. 4.1.8

Exercise 4.1.4 Show that

K(x+ iy) +
1

K(x+ iy)
=

∣∣[Df(x, y)]
∣∣2

Jac f(x, y)
. ♦ 4.1.9

Note that if U, V ⊂ C are open and f : U → V is a continuous map
whose distributional derivatives are locally in L2, then

Jac f =
∣∣∣∣∂f∂z

∣∣∣∣2 − ∣∣∣∣∂f∂z̄
∣∣∣∣2 and

∥∥[Df ]
∥∥2 =

(∣∣∣∣∂f∂z
∣∣∣∣+
∣∣∣∣∂f∂z̄

∣∣∣∣)2

4.1.10

are locally in L1.
Thus Definition 4.1.1 can be restated as follows:

inDefinition 4.1.5 (Quasiconformal map: 2nd analytic definition)
Let U , V be open subsets of C and take K ≥ 1. A map f : U → V is
K-quasiconformal if

1. it is a homeomorphism,

2. its distributional partial derivatives are locally in L2, and

3. its distributional partial derivatives satisfy

Jac f ≥ 1
K

∥∥[Df ]
∥∥2 locally in L1. 4.1.11

Note that f is necessarily orientation preserving, since the Jacobian is
positive by part 3.

Inequalities 4.1.1 and 4.1.11 would not make sense if distributional par-
tial derivatives were simply distributions. They would make sense if the
derivatives were only required to exist a.e. and to be in L2. Some authors
mistakenly use this definition of quasiconformal mapping. It is not a useful
definition, because the resulting maps do not have the desired properties.
In particular, Weyl’s lemma would be false, as shown in Example 4.1.8.
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inTheorem 4.1.6 (Weyl’s lemma) If U ⊂ C is open, and f : U → C is

a distribution in U satisfying ∂f/∂z̄ = 0, then f is an analytic function

on U .

Proof Choose r > 0, let Dr(z) be the disc of radius r centered at z, and
let ϕε be a family of test functions with support in Dr(0) and tending to
the delta function as ε → 0. Then the convolutions fε = f ∗ ϕε are C∞

functions on Ur := { z ∈ U | Dr(z) ⊂ U }, and the fε satisfy ∂fε/∂z̄ = 0.
(This is not true for the function of Example 4.1.8. It is essential that it is
the distributional derivative that vanishes.) Therefore each fε is an analytic
function on Ur.

We want to show that the fε converge uniformly on compact subsets
as ε → 0; for this we need a slight variation on the Cauchy integral for-
mula. Choose r1 < r2 and a C∞ function η with support in (r1, r2) with∫ r2
r1
η(r) dr = 1. Then the equation

fε(z) =
1

2πi

∫ r2

r1

∫ 2π

0

fε(z0 + reiθ)
z − (z0 + reiθ)

η(r) dθ dr 4.1.12

is true in the disc of radius r1 around any point z0 ∈ Ur+r2 . In equation
4.1.12, for each fixed z, the distribution fε is evaluated on the fixed test

function
η(r)

z − (z0 + reiθ)
, so it converges as ε → 0, giving f a value at

every point. Since the test functions vary continuously as functions of z,
the function f is continuous. Using an appropriate variant of the Cauchy
integral formula, it is not much harder to show that the derivative exists
and is continuous. ¤

inCorollary 4.1.7 A 1-quasiconformal mapping is analytic, in fact, it is

a conformal mapping, since it is a homeomorphism.

Proof A 1-quasiconformal mapping satisfies equation 4.1.1 with k = 0,
i.e., it satisfies the hypothesis of Weyl’s lemma. ¤

The following example shows how badly behaved a homeomorphism can
be when it is only differentiable almost everywhere, with the derivatives
satisfying inequalities 4.1.1 and 4.1.11. This example should be kept in
mind throughout this chapter. In some sense the whole chapter is a fight
against it: we are constantly worried that some part of the distributional
derivative is hiding in a set of measure 0.

Example 4.1.8 (A homeomorphism of R2 that is not quasiconfor-
mal) Let the function η : R → R be the standard “devil’s staircase”: the
unique nondecreasing function such that


