
3
Hyperbolic geometry of Riemann

surfaces

By Theorem 1.8.8, all hyperbolic Riemann surfaces inherit the geometry
of the hyperbolic plane. How this geometry interacts with the topology of
a Riemann surface is a complicated business, and beginning with Section
3.2, the material will become more demanding. Since this book is largely
devoted to the study of Riemann surfaces, a careful study of this interaction
is of central interest and underlies most of the remainder of the book.

3.1 Fuchsian groups

We saw in Proposition 1.8.14 that torsion-free Fuchsian groups and hyper-
bolic Riemann surfaces are essentially the same subject. Most such groups
and most such surfaces are complicated objects: usually, a Fuchsian group
is at least as complicated as a free group on two generators.

However, in a few exceptional cases Fuchsian groups are not complicated,
whether they have torsion or not. Such groups are called elementary ; we
classify them in parts 1–3 of Proposition 3.1.2. Part 4 concerns the com-
plicated case – the one that really interests us.

inNotation 3.1.1 If A is a subset of a group G, we denote by 〈A〉 the
subgroup generated by A.

inProposition 3.1.2 (Fuchsian groups) Let Γ be a Fuchsian group.

1. If Γ is finite, it is a cyclic group generated by a rotation about a

point by 2π/n radians, for some positive integer n.

2. If Γ is infinite but consists entirely of elliptic and parabolic ele-

ments, then it is infinite cyclic, is generated by a single parabolic

element, and contains no elliptic elements.

3. If Γ contains a hyperbolic element γ that generates a subgroup

of finite index, then there are two possibilities: either the group

is infinite cyclic, generated by a hyperbolic element, or it has a

subgroup of index 2, generated by a hyperbolic element.
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in

4. In all other cases, Γ contains a subgroup that is isomorphic to the

free group on two generators and consists entirely of hyperbolic

elements. Such Γ are said to be “non-elementary”.

Proof 1. Suppose Γ contains two elliptic elements, γ and δ, with distinct
fixed points a and b. Then among the fixed points of the conjugates γnδγ−n

and the fixed points of the conjugates δnγδ−n there are two that are further
apart than d(a, b); see Figure 3.1.1.
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Figure 3.1.1 Above, γ is rotation clockwise around a and δ is rotation coun-

terclockwise around b. In the cyclic groups generated by these rotations, there is

always some element that rotates by at least 2π/3, and if a and b are rotated by

at least this amount, their images will be further apart than a and b.

Repeat the argument, using the conjugates of γ and δ having these fixed
points, to find infinitely many fixed points of elliptics. This contradicts the
claim that Γ is finite. Thus all elements of Γ have the same fixed point,
and putting this fixed point at the origin in D, we see that every element
of Γ can be written z 7→ λz with |λ| = 1. But the discrete subgroups of the
unit circle are all finite cyclic groups.

2. By part 1, if Γ is an infinite discrete Fuchsian group made up of
elliptic elements, then there must be angles 2α and 2β such that Γ contains
rotations γ, δ by these angles with centers a and b arbitrarily far apart. Let
m be the line joining a and b, let l1 be a line through a making angle α with
m, and let l2 be a line through b making angle β with m, as shown in Figure
3.1.2. At both a and b there are two such lines; choose the appropriate ones
so that γ = Rm ◦ Rl1 and δ = Rm ◦ Rl2 , where Rl denotes reflection in a
line l. In any case,

η := γ−1 ◦ δ = Rl1 ◦Rl2 = Rl1 ◦Rm ◦Rm ◦Rl2 3.1.1
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Figure 3.1.2. Given angles α, β > 0,

if two lines l1, l2 intersect a third line m

under these angles at points a, b, then

when a and b are sufficiently far apart,

the lines l1, l2 are disjoint.

belongs to Γ. But if a and b are sufficiently far apart, l1 and l2 do not
intersect, so η is not elliptic. This shows that an infinite Fuchsian group
cannot be entirely made up of elliptic elements.

Suppose Γ contains a parabolic element γ and no hyperbolic elements.
Use the H model of the hyperbolic plane. By conjugation and replacing γ
by γ−1 if necessary, we may assume that γ : z 7→ z+1. If another parabolic
δ has a different fixed point, we may put that fixed point at 0, so that

γ =
[

1 1
0 1

]
and δ =

[
1 0
a 1

]
3.1.2

for some a 6= 0. Exchanging δ and δ−1 if necessary, we may assume a > 0,
and then γδ has trace 2 + a and is hyperbolic.

Thus all the parabolics fix ∞ and all are translations by elements in
some discrete subgroup of R. But we know that such a subgroup is infinite
cyclic, generated by some t ∈ R. Any elliptics that Γ might contain must
fix infinity, so there aren’t any.

3. Suppose γ ∈ Γ is hyperbolic and generates a subgroup of finite index;
let its fixed points be a and b, which we may place at 0 and∞. Hyperbolic
elements with these fixed points are multiplication by positive reals, so
〈γ〉 is isomorphic to a discrete subgroup of R∗+ (the strictly positive reals),
hence infinite cyclic, generated by some δ with δn = γ for some n.

Any element α ∈ Γ must preserve {a, b}: if α({a, b}) = {a′, b′}, then a′, b′

are the fixed points of the subgroup α ◦ 〈δ〉 ◦ α−1. If {a′, b′} 6= {a, b}, then
the orbit of {a′, b′} under 〈δ〉 is infinite, giving infinitely many subgroups
of Γ conjugate to 〈δ〉, which is then not of finite index.

Thus there is a homomorphism Γ → Perm{a, b}; its kernel is 〈δ〉, and
if it is surjective, then the elements of Γ that exchange a and b are all
conjugate, all elliptics of order 2.

4. Suppose Γ contains a hyperbolic element γ such that 〈γ〉 is not of
finite index in Γ. We saw in part 3 that if all elements of Γ preserve the
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set {a, b} of fixed points of γ, then 〈γ〉 is of finite index in Γ. So there is
an element δ ∈ Γ that does not preserve {a, b}, and γ′ := δ ◦ γ ◦ δ−1 is
a hyperbolic element of Γ, such that γ′ and γ are not powers of a single
element, since they do not have the same fixed points in R.

In fact they have no common fixed point. If they did, put this common
fixed point at infinity in the model H, and the other fixed point of γ at 0.
Then γ becomes the mapping z 7→ az, and switching γ and γ−1 if necessary,
we may assume a > 1. The element γ′ is also affine, i.e., γ′(z) = a′z + b′

for some a′, b′ with a′ 6= 0.
There can then be no translation in Γ: if δ := z 7→ z + b′, then the map

γ−nδγn : z 7→ z + b′/an converges to the identity, which contradicts the
hypothesis that Γ is discrete. But(

γ−1 ◦ (γ′)−1 ◦ γ ◦ γ′
)

(z) = z +
(a− 1)b′

aa′
3.1.3

is a translation, contradicting the assumption that γ′ and γ have a common
fixed point.

Thus all the fixed points of γ and γ′ are distinct. If the axes of γ and
γ′ intersect, then the axes of γ and γ′′ = γ′γ(γ′)−1 do not intersect; in this
case, rename γ′′ to be γ′.

We now have two hyperbolic elements γ, γ′ of Γ with disjoint axes.
Consider the common perpendicular L to the axes, and powers γk, (γ′)l

such that the lines

γk(L), γ−k(L), (γ′)l(L), (γ′)−l(L) 3.1.4

are all disjoint; this is possible since these four lines are in arbitrarily small
neighborhoods of the four distinct fixed points. Finally, the group Γ1 gen-
erated by γ2k, (γ′)2l is a Schottky group (see Example 3.9.7); in particular,
it is a free group on its two generators, and the quotient D/Γ1 is a sphere
with three discs removed. ¤

3.2 The classification of annuli

In this section we study cases 2 and 3 of Proposition 3.1.2, when the Fuch-
sian groups are torsion free. This is exactly equivalent to the study of
Riemann surfaces homeomorphic to annuli.

A Riemann surface will be called an annulus if its fundamental group
is isomorphic to Z. We will see in a moment that this is equivalent to
requiring that it be homeomorphic – in fact, analytically isomorphic – to
some standard cylinder.
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inProposition 3.2.1 An annulus A is analytically isomorphic to either

1. the punctured plane C− {0},
2. the round annulus

AM :=
{
z ∈ C | 1 < |z| < e2πM

}
, 3.2.1

for exactly one value of M ∈ (0,∞), called the modulus of A,

denoted Mod(A), or

3. the punctured disc D∗ := D − {0}, isomorphic to the exterior

punctured disc

A∞ :=
{
z ∈ C | 1 < |z| <∞

}
. 3.2.2
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Figure 3.2.1 The annulus A′ at far left is isomorphic to the punctured disc

D∗. The annulus A is isomorphic to the round annulus AM . We do not show an

annulus isomorphic to the punctured plane.

Remark 3.2.2 An annulus isomorphic to the punctured plane C − {0}
is called doubly infinite. An annulus isomorphic to the punctured disc is
called singly infinite. 4

Proof The universal covering space Ã must be isomorphic to either C or
D, by the uniformization theorem, Theorem 1.1.1. (It can’t be compact,
since the covering group is infinite.) By Theorem 1.8.2, the automorphisms
of C are the mappings z 7→ az + b, which always have a fixed point if
a 6= 1. Thus if Ã is isomorphic to C, the group of covering automorphisms
is generated by a single translation, say Tb : z 7→ z + b. The mapping
z 7→ e2πiz/b then induces an isomorphism A→ C− {0}.

If Ã is isomorphic to D, then the covering group is generated by a single
automorphism α with no fixed point, which is either parabolic or hyperbolic
(Proposition 2.1.14). If α is parabolic, then an isomorphism from D to H
can be chosen so that α is conjugate to z 7→ z ± 1. As above, the map
z 7→ e−2πiz then induces an isomorphism A→ A∞.

Finally, if α is hyperbolic, then A is isomorphic to B/D(α)Z, where D
is the infimum defined in equation 2.1.13:

D(α) := inf
z∈D

d
(
z, α(z)

)
. 3.2.3


