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Glossary

Entries in this glossary are some terms used but not defined in the book. Text

in brackets describes where the term is first used. The choice of what to include is

somewhat arbitrary; I have particularly tried to include words whose usage in the

mathematical literature is ambiguous (for instance, charts and local coordinates

for manifolds). I have also tried to include words when several words in the

literature describe the same concept: the reader may have studied the concept

under a different name: cylinders and annuli for instance. I have also included

notions that I feel are important, but don’t seem to be in the curriculum in many

places, such as “proper map” and “group action.” Differential forms are a more

delicate matter: I give some hints but nowhere near enough to bring a reader

who doesn’t know the topic up to speed.

Other entries are included because readers of early drafts of the book were

puzzled by some bit of notation (such as why a cokernel is called a cokernel).

act freely, act transitively [Section 1.8] See group action.

annulus [proof of Lemma 1.4.3] Synonymous with cylinder; discussed in
Section 3.2.

blow-up [Example 1.3.4] Blowing up a submanifold of a manifold is a
construction from algebraic and analytic geometry, in which the subman-
ifold is replaced by the projective space bundle of its normal bundle. To
blow up a point x on an n-dimensional manifold X, choose an isomorphism
ϕ of a neighborhood U of x to a neighborhood V of 0 in TxX (or Rn if we
are dealing with differentiable manifolds). For the notation P(·), see the
glossary entry on projective space. Let V ′ ⊂ V × P(TxX) be the subset

V ′ := { (y ∈ V, L ∈ P(TxX) | y ∈ L }

and define π : V ′ → V by π(y, L) := y. Then π−1(x) = P(TxX) and the
map π : V ′ − π−1(x) → V − {x} is an isomorphism. The blow-up X̃x is
the quotient of X − {x} t V ′ by the equivalence relation that identifies
(y, L) ∈ V ′ − π−1(x) with ϕ−1(y) ∈ X − {x}. From this description it is
easy to see that X̃x is a smooth manifold with the desired properties.

braid [Section 5.2] Consider the space Xn of distinct n-tuples of points
in C. The braid group is the fundamental group of Xn. A braid with n

strands is a closed path in Xn.
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branch point [Example 6.3.6] If a map of surfaces is a local homeomor-
phism except at isolated points, these points are called branch points. The
typical example is z 7→ z2, which has a branch point at 0. Synonymous
with ramification point.

bundle [bundle map discussed in Section 4.8; tangent bundle discussed in
Section 4.9] We use bundle as synonymous with “locally trivial bundle.” A
map p : Y → X is a locally trivial bundle if every x ∈ X has a neighborhood
U such that there exists an isomorphism ϕU : p−1(U) → U × p−1(x) such
that the diagram

p−1(U)
ϕU−→ U × p−1(x)

p↘ ↙ pr1

U

commutes. A trivialization of p is a homeomorphism h : Y → X × p−1(x)
for some x, such that

Y
h−→ X × p−1(x)

p↘ ↙ pr1

X

commutes. In most instances of interest, the fibers have extra structure,
and the isomorphisms are required to preserve this structure; we then speak
of a “bundle of . . . .”. A particularly important example is that of vector
bundles, where the fibers are vector spaces. A trivialization of a “bundle of
. . . ” is a trivialization that preserves whatever structure is given by “. . . ”.

bundle map [discussion following equation 4.8.17] If p1 : X1 → T and
p2 : X2 → T are two bundles, then a map f : X1 → X2 is a bundle map
if p1 = p2 ◦ f . If the Xi are bundles of something (vector spaces, Lie
groups, complex manifolds, etc.), then f is required to preserve the relevant
structure.

cardioid [introduction to Theorem 4.9.15] A cardioid is the plane curve
obtained by marking a point on a circle, and rotating the circle on another
circle of equal radius.

chart [Definition 1.2.1] See manifold.

closed form [proof of Proposition 1.6.1] See differential form.

cochain complex [Proposition A6.2.1] A cochain complex of Abelian
groups is a sequence of Abelian groups A0, A1, . . . , together with homo-
morphisms di : Ai → Ai+1 such that di+1 ◦ di = 0 for every i = 0, 1, 2, . . . .
The whole structure is often denoted (A•, d•). The cohomology of the
complex is

Hk(A•, d•) :=
ker di : Ai → Ai+1

im di−1 : Ai−1 → Ai
.
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In practice, the Abelian groups Ai often have more structure: they may be
modules over some ring, or vector spaces over some field; in these cases the
cohomology groups have the same structure.

codimension [proof of Proposition 7.4.15] A k-dimensional submanifold
of a manifold of dimension n has codimension n− k. The same applies to
a k-dimensional subspace of an n-dimensional vector space.

codomain [proof of Proposition 3.3.4] A map f : X → Y has domain
X and codomain Y . The subset f(X) ⊂ Y is called the image of f . The
word “range” is ambiguous; some authors use it as synonymous with image,
others as synonymous with codomain, and many use it for both.

cofinal [Example A7.2.5] In a partially ordered set (X,≺), a subset Z is
cofinal if for every x ∈ X, there exists z ∈ Z such that x ≺ z. When taking
direct and inverse limits, it is enough to consider a cofinal set of indices.

cohomology [Section 1.1] Included in the prerequisites, cohomology is a
major topic in algebraic and differential topology, coming in many flavors.
For the definition of De Rham cohomology, see the entry on differential
forms. For cohomology of sheaves, see Appendix A7. Singular cohomology
is covered in all textbooks on algebraic topology, for instance [56].

cokernel [Theorem 5.2.9] If L : X → Y is a linear transformation, then
cokerL = Y/L(X). Why the word “cokernel?” The answer comes from
category theory.

The kernel of a morphism f : A → B is an object C with a morphism
g : C → A such that f ◦g = 0 and whenever a morphism h : D → A satisfies
f ◦ h = 0, there exists a unique morphism α : D → C such that h = g ◦ α.

The cokernel of a morphism f ′ : B′ → A′ is an object C ′ together with
a morphism g′ : A′ → C ′ such that g′ ◦ f ′ = 0, and whenever a mor-
phism h′ : A′ → D′ satisfies h′ ◦ f ′ = 0, there exists a unique morphism
α′ : C ′ → D′ such that h′ = α′ ◦ g′. In the two corresponding diagrams

C
g→ A

f→ B
α ↑ h↗
D

and
C ′

g′← A′
f ′← B′,

α′ ↓ h′ ↙
D′

the second is exactly the first with all the arrows turned backwards.

complex dilatation [proof of Proposition 4.9.9] Let U ⊂ C be open.
The complex dilatation of a map f : U → C is

∂f

∂z

/
∂f

∂z
.


