Partitions of unity

In this appendix we prove that a second-countable finite-dimensional manifold has a partition of unity subordinate to any cover. This material, although easy, is often omitted in courses on manifolds.

Definition A1.1 (Second countable) A topological space X is **second countable** if there is a countable basis for the topology.

In other words, X is second countable if there is a countable collection of open sets $(U_i)_{i \in I}$ such that every open set U is a union

$$U := \bigcup_{j \in J} U_j$$

for some subset $J \subset I$. A standard example of a second-countable space is \mathbb{R}^n; we can take the U_i to be the balls with rational radii centered at points with rational coordinates. Separable Banach spaces are also second countable.

A standard counterexample is the nonseparable Banach space l^∞; the uncountably many unit balls centered at the vectors where all the entries are ± 1 are disjoint. The horrible surface of Example 1.3.1 is a much more relevant counterexample.

Definition A1.2 (σ-compact) A topological space X is **σ-compact** if it is Hausdorff and is a countable union of compact sets.

Proposition A1.3 A locally compact Hausdorff space X that is second countable is σ-compact. In particular, every second-countable finite-dimensional manifold is σ-compact.

Proof For each point $x \in X$, choose a neighborhood V_x with compact closure. If U is a countable basis for the topology, it is easy to see that those $U \in U$ that are contained in some V_x that are still a basis, and that \overline{U} is compact for all such U. These sets \overline{U} are a countable collection of compact sets whose union is X. □

Exercise A1.4 shows that a topological space that is not locally compact can perfectly well be second countable without being σ-compact.
Exercise A1.4 Show that a Hilbert space with a countably infinite basis is second countable but not σ-compact. Hint: A compact subset is nowhere dense, so you can apply the Baire category theorem.

Definition A1.5 (Locally finite cover) An open cover $\mathcal{U} := (U_i)_{i \in I}$ of a topological space X is locally finite if every point $x \in X$ has a neighborhood V that intersects only finitely many of the U_i.

The first step in constructing partitions of unity subordinate to an open cover is to show that the cover has a locally finite refinement. A slight modification of the proof of Proposition A1.6 shows that this is true for any σ-compact space. We will show a slightly stronger statement, but only for finite-dimensional manifolds; it will simplify the construction of partitions of unity.

Proposition A1.6 Let $B^n_r \subset \mathbb{R}^n$ be the ball of radius r, and let X be a second countable, n-dimensional manifold. Then any open cover of X admits a countable, locally finite refinement \mathcal{U} by open subsets U that admit surjective coordinate maps $\varphi_U : U \to B^n_2$ such that the $\varphi_U^{-1}(B^n_1)$ still cover X.

Proof Since X is second countable, it has at most countably many components, and we may assume X to be connected. Choose a countable cover $\mathcal{V} := \{V_0, V_1, \ldots \}$ of X by open sets with compact closures, indexed by the positive integers. Define by induction compact sets

$$ A_0 \subset A_1 \subset \ldots \quad A1.2 $$

as follows: Set $A_0 := \overline{V}_0$, and suppose A_0, \ldots, A_i have been defined. The V_j form an open cover of A_i, so there is a smallest J_i such that

$$ A_i \subset \bigcup_{j \leq J_i} U_j. \quad A1.3 $$

Set $A_{i+1} := \bigcup_{j \leq J_i} \overline{V}_j$. If the J_i eventually stabilize, i.e., if $J_i = J_{i+1} = \ldots$, then A_i is closed (in fact, compact) and open in X, hence $A_i = X$, since X is connected. Otherwise, $J_i \to \infty$ and we also have $\cup_i A_i = \cup_i \overline{V}_i = X$. In both cases, $\cup_i A_i = X$. For convenience, set $A_i := \emptyset$ if $i < 0$.

Let \mathcal{W} be an open cover of X. Intersect all open sets $W \in \mathcal{W}$ with all $\bar{A}_{i+2} - A_i$, to construct a new open cover \mathcal{W}' that refines \mathcal{W}. For each $x \in X$, find a coordinate neighborhood U_x contained in some element of \mathcal{W}', together with a surjective local coordinate $\varphi_x : U_x \to B^n_2$. Define $U'_x := \varphi_x^{-1}(B^n_1)$.

For each i, choose a cover of the compact set $A_i - \bar{A}_{i-1}$ by finitely many of the $U'_x, x \in Z_i$, where $Z_i \subset A_i - \bar{A}_{i-1}$ is a finite set. For convenience, set...
$Z_i := \emptyset$ for $i < 0$. The set $Z := \cup_i Z_i$ is countable; consider the cover \mathcal{U} by all $U_x, x \in Z$. This cover is a refinement of \mathcal{W}, and it is locally finite: the open sets $A_{i+1} - A_i$ form an open cover of X, and each one can intersect only the finitely many

$$U_x, \quad \text{for } x \in \bigcup_{j=i-2}^{i+2} Z_j.$$ \hfill A1.4

Clearly our open sets are coordinate neighborhoods, as desired. \hfill \square

Construction of partitions of unity

It is now easy to construct partitions of unity subordinate to any cover of a second-countable n-dimensional manifold X.

Theorem A1.7 (Partitions of unity) Let X be a second countable finite-dimensional topological manifold, and let \mathcal{W} be an open cover of X. Then there exists a locally finite refinement \mathcal{U} of \mathcal{W}, and a continuous partition of unity subordinate to \mathcal{U}. Moreover, if X is a C^∞ manifold, the partition of unity can be chosen C^∞.

Proof Find a locally finite cover $\mathcal{U} := (U_x)_{x \in Z}$, as in the proof of Proposition A1.6, together with coordinate maps φ_x, which can be chosen C^∞ if X is C^∞.

Let $h \geq 0$ be a C^∞ function on \mathbb{R}^n with support in B^n_2 and strictly positive on B^n_1. Define h_x, for $x \in Z$, by $h_x := h \circ \varphi_x$; since h_x has compact support, it is the restriction of a continuous function on X (C^∞ if X is C^∞) with support in U_x, which we will still denote by h_x. Now the function $g := \sum_{x \in Z} h_x$ is a strictly positive continuous function on X; the sum exists and is continuous (C^∞ if X is C^∞) because the cover \mathcal{U} is locally finite. The functions $g_x, x \in Z$, defined by $g_x := h_x/g$ form the desired continuous partition of unity, C^∞ if X is C^∞. \hfill \square