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1.7.17. Does the implication “1 =⇒ 2” in Proposition 1.7.9 remain valid if X, Y
are topological spaces?

1.7.18. Let X, Y be metric spaces and let f : X → Y be a bijection. Show that the
following are equivalent.

1. f is a homeomorphism

2. For all sequences (xn) in X and all a ∈ X, we have limn→∞ xn = a if and only
if limn→∞ f(xn) = f(a).

1.8 Completeness

Virtually everything in analysis involves constructing objects as limits. Since we
usually don’t know what the limit is, it is crucial to have some guarantee that
limits exist other than checking the definition, which would require knowing
the limit. For R, we have such a guarantee: the axiom of completeness for R
says that every nonempty set of real numbers that is bounded from above has
a supremum.

In this section we discuss a similar concept for general metric spaces. Since
we cannot talk about a point in a metric space being larger than another point,
the concept of upper bound and supremum of a set in an arbitrary metric space
does not exist. Thus, we cannot transfer the axiom of completeness verbatim
to an abstract metric space. Instead we will look for an equivalent formulation
that involves only the metric properties of R.

The observation that interests us is the following.

Theorem 1.8.1. The following statements are equivalent:
1. If ∅ "= A ⊂ R is bounded, then sup A exists.
2. Every Cauchy sequence in R converges to some number in R.

Proof. 1 =⇒ 2 : Note that statement 1 implies Theorem 1.7.30. Let (xn) be
a Cauchy sequence in R. Then (xn) is bounded by part 1 of Proposition 1.7.17.
By Theorem 1.7.29, (xn) contains a monotone subsequence (xnk). Since (xnk)
is a bounded monotone sequence in R, it must converge by Theorem 1.7.30.
Hence, by Proposition 1.7.28, (xn) itself converges. Thus, 1 =⇒ 2.

2 =⇒ 1 : Assume statement 2, and let A be a nonempty subset of R that is
bounded from above. We will construct sequences (an) and (bn) of real numbers
with the following properties: for all n ≥ 1,

a. an ∈ A and bn is an upper bound for A.
b. bn − an ≤ 1

2n−1 (b1 − a1).
c. an ≤ an+1 ≤ bn+1 ≤ bn.
Once this has been done, it will follow that A has a least upper bound. To

see why this is so, let (an) and (bn) be as above. Given ε > 0, it is possible by


