Chapter 6

Additional topics

In this chapter we explore several interesting applications of results developed so far: the Baire-Osgood theorem, which uses Baire's category theorem; Muntz's theorem, which uses the formula for computing distances from a point to a finite-dimensional vector subspace of an inner product space; and the existence and uniqueness of solutions to differential equations, which use the Banach fixed point theorem. Completeness plays a crucial role in most of these applications.

6.1 The Baire-Osgood theorem

The Baire-Osgood theorem says that if a sequence of continuous functions from a Banach space X to \mathbb{R} converges pointwise to a function f, then f must be continuous at "most" points in X. It is proved by showing that the set of points in X at which f is discontinuous is thin in X.

Notation 6.1.1 (Set of discontinuities). Let $f : (X, d) \to (Y, \rho)$ be a function. We denote by D(f) the set of all points in X at which f is discontinuous.

This set D(f) can be characterized nicely in terms of closed sets in X. This requires reformulating the condition of continuity. Recall from Definition 1.1.19 that diam $A := \sup \{ d(x, y) \mid x, y \in A \}$.

Definition 6.1.2 (Oscillation). Let $f : (X, d) \to (Y, \rho)$ be a function and let $A \neq \emptyset$ be a bounded subset in X. The oscillation of f on A, denoted by $\Omega(f; A)$, is

$$\Omega(f;A) := \operatorname{diam} f(A). \tag{6.1.1}$$

For $x \in X$, the oscillation of f at x is

$$\omega_f(x) := \inf_{\delta > 0} \Omega(f; B(x, \delta)). \tag{6.1.2}$$

It is obvious that if a nonempty set A is a subset of B, then we have $\Omega(f; A) \leq \Omega(f; B)$; if $x \in X$, then for all $\eta > 0$,

$$0 \le \omega_f(x) \le \Omega(f; B(x, \eta)). \tag{6.1.3}$$

Proposition 6.1.3. Let $f: (X, d) \to (Y, \rho)$ be a function. Then

- 1. For each r > 0, the set $\{a \in X \mid \omega_f(a) < r\}$ is open in X.
- 2. For each $a \in X$, f is continuous at a if and only if $\omega_f(a) = 0$.

PROOF. 1. Let r > 0 and set $U := \{ a \in X \mid \omega_f(a) < r \}$. Assume that $x_0 \in U$. We will show that x_0 is an interior point of U. Since $\omega_f(x_0) < r$, there must be some $\delta > 0$ such that

$$\Omega(f; B(x_0, \delta)) < r. \tag{6.1.4}$$

Let $t \in B(x_0, \delta)$; then there is some $\eta > 0$ such that $t \in B(t, \eta) \subset B(x_0, \delta)$. Hence, $\omega_f(t) \leq \Omega(f; B(t, \eta)) \leq \Omega(f; B(x_0, \delta)) < r$. This shows that $t \in U$. Since $t \in B(x_0, \delta)$ was arbitrary, we conclude that $B(x_0, \delta) \subset U$.

2. Assume that f is continuous at $a \in X$. Let $\epsilon > 0$ be arbitrary. Then there is some $\delta > 0$ such that whenever $t \in B(a, \delta)$, we have $\rho(f(t), f(a)) < \frac{\epsilon}{2}$. Thus, for $x, y \in B(a, \delta)$,

$$\rho(f(x), f(y)) \le \rho(f(x), f(a)) + \rho(f(a), f(y)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$
(6.1.5)

Consequently, $\Omega(f; B(a, \delta)) \leq \epsilon$. Thus, from (6.1.3), $0 \leq \omega_f(a) \leq \epsilon$. Because $\epsilon > 0$ was arbitrary, we must have

$$\omega_f(a) = 0. \tag{6.1.6}$$

Conversely, assume f is not continuous at a. Then there is some $\epsilon_0 \ge 0$ such that for any $\delta > 0$, there is some $t \in B(a, \delta)$ such that $\rho(f(a), f(t)) \ge \epsilon_0$. In particular, $\Omega(f; B(a, \delta)) \ge \epsilon_0$. Since $\delta > 0$ was arbitrary, it follows that

$$\omega_f(a) \ge \epsilon_0 > 0. \qquad \Box \tag{6.1.7}$$

Corollary 6.1.4. Let $f : X \to Y$ be a function between metric spaces. Then the set D(f) of points in X at which f is discontinuous is

$$D(f) = \bigcup_{n=1}^{\infty} \left\{ a \in X \mid \omega_f(a) \ge \frac{1}{n} \right\}.$$
(6.1.8)

Hence, D(f) is a countable union of closed sets in X.

PROOF. By part 2 of Proposition 6.1.3, $a \in D(f)$ if and only if $\omega_f(a) > 0$, in which case there must be some positive integer n such that $\omega_f(a) \ge \frac{1}{n}$. Hence, (6.1.8) holds. Thus, D(f) is a countable union of closed sets in X by part 1 of Proposition 6.1.3. \Box

416

Corollary 6.1.5 says that there is no function $f : \mathbb{R} \to \mathbb{R}$ whose set of discontinuities is the irrationals; Example 6.1.10 shows that there is a function $f : \mathbb{R} \to \mathbb{R}$ whose set of discontinuities is the rationals.

Corollary 6.1.5. Let Y be any metric space. Then there is no $f : \mathbb{R}^n \to Y$ with $D(f) = \mathbb{Q}^n$.

PROOF. Let $f : \mathbb{R}^n \to Y$. By Corollary 6.1.4, D(f) is a countable union of closed sets in \mathbb{R}^n . Hence, if $D(f) = \mathbb{Q}^n$, then \mathbb{Q}^n is a countable intersection of open sets in \mathbb{R}^n , contradicting Example 1.13.12. \Box

If X is a metric space with the discrete topology, then all maps f defined on X are continuous and no subset of X is a set of discontinuities for any function f. Theorem 6.1.7 gives conditions on a metric space that ensure that $D(f) \subset X$ is a countable union of closed sets in X. We will need the following lemma.

Lemma 6.1.6. Let X be a metric space and assume that every open ball in X is uncountable. Let A be a closed set in X and denote by A^0 the set of all interior points of A. Let C be countable dense set in X. Then for each $x \in A$, there is some r > 0 such that if $0 < \epsilon < r$, the ball $B(x, \epsilon)$ contains u, v, with $v \in A \setminus (C \cap A^0)$ and

$$u \in \begin{cases} C \cap A^0 & , \text{ if } x \in A^0 \\ X \setminus A & , \text{ if } x \in A \setminus A^0 \end{cases}$$

$$(6.1.9)$$

PROOF. Assume first that $x \in A^0$. Then there is some r > 0 such that $B(x,\epsilon) \subset A$ for all $0 < \epsilon < r$. Let $0 < \epsilon < r$ be arbitrary. Since *C* is dense in *X*, there is some $u \in C \cap B(x,\epsilon)$. By Proposition 1.2.5, *u* is also an interior point of *A*. Hence, $u \in C \cap A^0$. By assumption, $B(x,\epsilon)$ is uncountable. Because *C* is countable, there must be some $v \in B(x,\epsilon)$ such that $v \notin C$. Thus, $v \in A \setminus (C \cap A^0)$.

Next, assume that $x \notin A^0$. Let $\epsilon > 0$ be arbitrary. Then, of course, $x \in B(x, \epsilon)$ and $x \in A \setminus (C \cap A^0)$. So, we can take v = x. Since $x \notin A^0$, the open ball $B(x, \epsilon)$ must contain some $u \in X \setminus A$. \Box

Theorem 6.1.7 (Sets of discontinuities). Let X be a separable metric space such that every open ball in X is uncountable and let $F \subset X$. Then F is a countable union of closed sets in X if and only if there is some $f: X \to \mathbb{R}$ such that D(f) = F.

In particular, since every open ball in a nonzero normed space is uncountable (see Exercise 2.4.9), the theorem holds if X is any nonzero separable normed space.

Example 6.1.8. Let X be any separable normed space. Then there is some dense set S of X and a function $f: X \to \mathbb{R}$ such that f is discontinuous

at each point of S but continuous at every point of $X \setminus S$. To see this, let $S = \{x_1, x_2, \ldots\}$ be a countable dense subset of X. Then S is a countable union of closed sets in X. Hence, by Theorem 6.1.7, such an f exists. \triangle

Example 6.1.9. In Theorem 6.1.7, it is important that every open ball in X be uncountable. If we set $X := \mathbb{Q}$ with the discrete metric, then the set \mathbb{N} is a countable union of closed sets in X but there is no $f : X \to \mathbb{R}$ with $D(f) = \mathbb{N}$, since every $f : X \to \mathbb{R}$ is continuous on all of X.

PROOF OF THEOREM 6.1.7. The "if" part was proved in Corollary 6.1.4. For the "only if" part, set $F := \bigcup_{k=1}^{\infty} F_k$, where each F_k is a closed set in X. We will show that there is some $f : X \to \mathbb{R}$ such that D(f) = F.

Set $A_1 := F_1$, $A_2 := A_1 \cup F_2$, $A_3 := A_2 \cup F_3$, and so on. Then (A_n) is a sequence of closed sets in X with $A_{n-1} \subset A_n$ and

$$F = \bigcup_{n=1}^{\infty} A_n. \tag{6.1.10}$$

Since X is separable, there is a countable dense set C in X. Set

$$f_n(x) := \begin{cases} 1 & \text{, if } x \in A_n \setminus (C \cap A_n^0) \\ 0 & \text{, otherwise.} \end{cases}$$
(6.1.11)

It is clear that $f_n = 0$ on the open set $X \setminus A_n$, so f_n is continuous at all points in $X \setminus A_n$. Let $x_0 \in A_n$. Apply Lemma 6.1.6 to conclude that for all $\epsilon > 0$ sufficiently small, there are u, v in $B(x_0, \epsilon)$ such that $u \in (X \setminus A_n) \cup (C \cap A_n^0)$ and $v \in A_n \setminus (C \cap A_n^0)$. Thus,

$$\Omega(f_n; B(x_0, \epsilon)) \ge f_n(v) - f_n(u) = 1.$$
(6.1.12)

Since (6.1.12) holds for all sufficiently small $\epsilon > 0$, we have $\omega_{f_n}(x_0) = 1$. Consequently, f_n is discontinuous at x_0 . Since n and $x_0 \in A_n$ were arbitrary, we have thus shown that

$$D(f_n) = A_n \quad \text{for all } n \in \mathbb{N}. \tag{6.1.13}$$

Each f_n is an element of B(X), the Banach space of all bounded functions on X, and $||f_n|| = 1$. So

$$\sum_{n=1}^{\infty} \|4^{-n} f_n\| < \infty.$$
(6.1.14)

By the Weierstrass test for uniform convergence (Corollary 2.8.3), there is some $f \in B(X)$ such that

$$f = \sum_{n=1}^{\infty} 4^{-n} f_n \quad \text{uniformly on } X.$$
(6.1.15)