Chapter 6

Additional topics

In this chapter we explore several interesting applications of results developed so
far: the Baire-Osgood theorem, which uses Baire’s category theorem; Muntz’s
theorem, which uses the formula for computing distances from a point to a
finite-dimensional vector subspace of an inner product space; and the existence
and uniqueness of solutions to differential equations, which use the Banach fixed
point theorem. Completeness plays a crucial role in most of these applications.

6.1 The Baire-Osgood theorem

The Baire-Osgood theorem says that if a sequence of continuous functions from
a Banach space X to R converges pointwise to a function f, then f must be
continuous at “most” points in X. It is proved by showing that the set of points
in X at which f is discontinuous is thin in X.

Notation 6.1.1 (Set of discontinuities). Let f: (X,d) — (Y, p) be a func-
tion. We denote by D(f) the set of all points in X at which f is discontinuous.

This set D(f) can be characterized nicely in terms of closed sets in X. This
requires reformulating the condition of continuity. Recall from Definition 1.1.19
that diam A :=sup {d(z,y) | z,y € A }.

Definition 6.1.2 (Oscillation). Let f: (X,d) — (Y, p) be a function and
let A # () be a bounded subset in X. The oscillation of f on A, denoted by
Q(f; 4), is

Q(f; A) := diam f(A). (6.1.1)
For x € X, the oscillation of f at x is

wr(x) = gggﬂ(f;B(x,é)). (6.1.2)
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It is obvious that if a nonempty set A is a subset of B, then we have
Q(f; A) < Q(f; B); if ¢ € X, then for all n > 0,

0 <wy(x) < Q(f; Bx,n)). (6.1.3)

Proposition 6.1.3. Let f: (X,d) — (Y, p) be a function. Then
1. For each r >0, the set {a € X | wy¢(a) <r } is open in X.

2. For each a € X, f is continuous at a if and only if wr(a) = 0.

PrOOF. 1. Let r >0 andset U :={a € X | wy(a) <r }. Assume that zo € U.
We will show that x( is an interior point of U. Since wy(x¢) < r, there must be
some 6 > 0 such that

Q(f; B(zo,6)) < (6.1.4)
)

Let t € B(xo,9); then there is some i > 0 such that ¢ € B(t,n) C B(zo,0
Hence, wy(t) < Q(f; B(t,n)) < Q(f;B(x,0)) < r. This shows that t € U
Since t € B(z,0) was arbitrary, we conclude that B(zg,d) C U.

2. Assume that f is continuous at a € X. Let € > 0 be arbitrary. Then
there is some § > 0 such that whenever t € B(a,0), we have p(f(t), f(a)) < 5.
Thus, for z,y € B(a, ),

p(J(@). W) < p(f(@), (@) +p(f(@), JW) <5+ 5=c  (6.15)

Consequently, Q(f;B(a,d)) < e. Thus, from (6.1.3), 0 < wy¢(a) < €. Because
€ > 0 was arbitrary, we must have

ws(a) = 0. (6.1.6)

Conversely, assume f is not continuous at a. Then there is some ¢y > 0 such
that for any § > 0, there is some ¢ € B(a,d) such that p(f(a), f(t)) > €. In
particular, Q(f; B(a,d)) > €. Since § > 0 was arbitrary, it follows that

wyr(a) > €y > 0. O (6.1.7)

Corollary 6.1.4. Let f: X — Y be a function between metric spaces. Then
the set D(f) of points in X at which f is discontinuous is

D(f):fj{an

n=1

w(a) > 1 } (6.1.8)

n

Hence, D(f) is a countable union of closed sets in X.

PRrROOF. By part 2 of Proposition 6.1.3, a € D(f) if and only if wy(a) > 0, in
which case there must be some positive integer n such that wy(a) > % Hence,
(6.1.8) holds. Thus, D(f) is a countable union of closed sets in X by part 1 of
Proposition 6.1.3. U
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Corollary 6.1.5 says that there is no function f: R — R whose set of dis-
continuities is the irrationals; Example 6.1.10 shows that there is a function
f+ R — R whose set of discontinuities is the rationals.

Corollary 6.1.5. Let Y be any metric space. Then there is no f: R® - Y
with D(f) = @".

Proor. Let f: R®™ — Y. By Corollary 6.1.4, D(f) is a countable union of
closed sets in R™. Hence, if D(f) = @", then Q" is a countable intersection of
open sets in R™, contradicting Example 1.13.12. ]

If X is a metric space with the discrete topology, then all maps f defined on
X are continuous and no subset of X is a set of discontinuities for any function
f. Theorem 6.1.7 gives conditions on a metric space that ensure that D(f) C X
is a countable union of closed sets in X. We will need the following lemma.

Lemma 6.1.6. Let X be a metric space and assume that every open ball in
X is uncountable. Let A be a closed set in X and denote by A° the set of all
interior points of A. Let C be countable dense set in X. Then for each x € A,
there is some r > 0 such that if 0 < € < r, the ball B(x,€) contains u,v, with
ve A\ (CN A% and

0 : 0
ue{CﬁA , ifveA (6.1.9)

X\A , ifzeA\A°

PROOF. Assume first that © € AY. Then there is some r > 0 such that
B(z,e) € Aforall 0 < e < r. Let 0 < € < r be arbitrary. Since C is
dense in X, there is some u € C'N B(x,¢). By Proposition 1.2.5; u is also an
interior point of A. Hence, u € C'N A°. By assumption, B(z, €) is uncountable.
Because C' is countable, there must be some v € B(z, €) such that v € C. Thus,
ve A\ (CnAY.

Next, assume that x ¢ A°. Let ¢ > 0 be arbitrary. Then, of course,
x € B(z,e) and z € A\ (C N A%. So, we can take v = z. Since v ¢ A°,
the open ball B(z,€) must contain some u € X \ A. O

Theorem 6.1.7 (Sets of discontinuities). Let X be a separable metric
space such that every open ball in X is uncountable and let F C X. Then F is
a countable union of closed sets in X if and only if there is some f: X — R
such that D(f) = F.

In particular, since every open ball in a nonzero normed space is uncountable
(see Exercise 2.4.9), the theorem holds if X is any nonzero separable normed
space.

Example 6.1.8. Let X be any separable normed space. Then there is some
dense set S of X and a function f: X — R such that f is discontinuous
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at each point of S but continuous at every point of X \ S. To see this, let
S = {x1,x2,...} be a countable dense subset of X. Then S is a countable
union of closed sets in X. Hence, by Theorem 6.1.7, such an f exists. A

Example 6.1.9. In Theorem 6.1.7, it is important that every open ball in X
be uncountable. If we set X := Q with the discrete metric, then the set N is a
countable union of closed sets in X but there is no f: X — R with D(f) = N,
since every f: X — R is continuous on all of X. A

PROOF OF THEOREM 6.1.7. The “if” part was proved in Corollary 6.1.4. For
the “only if” part, set F := Uzozl F}., where each F} is a closed set in X. We
will show that there is some f: X — R such that D(f) = F.

Set Ay := F1, Ag := Ay U Fy, A3 := As U F3, and so on. Then (A4,) is a
sequence of closed sets in X with A, C A,, and

F={]A. (6.1.10)
n=1

Since X is separable, there is a countable dense set C in X. Set

1 Lifze A\ (CNAY)
fn(2) '_{ 0 , otherwise. (6.1.11)

It is clear that f,, = 0 on the open set X \ A,,, so f, is continuous at all points
in X\ A4,. Let g € A,,. Apply Lemma 6.1.6 to conclude that for all € > 0
sufficiently small, there are u,v in B(zo,€) such that u € (X \ A,) U (C N A?2)
and v € A, \ (CN A2). Thus,

Q(fn; B(zo,€)) = fa(v) = fa(u) = 1. (6.1.12)

Since (6.1.12) holds for all sufficiently small € > 0, we have wy, (x¢) = 1. Con-
sequently, f, is discontinuous at zy. Since n and xg € A, were arbitrary, we
have thus shown that

D(fn,) =4, forallneN. (6.1.13)

Each f, is an element of B(X), the Banach space of all bounded functions on
X, and || fn]| = 1. So

ST full < oo (6.1.14)
n=1

By the Weierstrass test for uniform convergence (Corollary 2.8.3), there is some
f € B(X) such that

= Z 47" f, uniformly on X. (6.1.15)

n=1



