
Chapter 6

Additional topics

In this chapter we explore several interesting applications of results developed so
far: the Baire-Osgood theorem, which uses Baire’s category theorem; Muntz’s
theorem, which uses the formula for computing distances from a point to a
finite-dimensional vector subspace of an inner product space; and the existence
and uniqueness of solutions to differential equations, which use the Banach fixed
point theorem. Completeness plays a crucial role in most of these applications.

6.1 The Baire-Osgood theorem

The Baire-Osgood theorem says that if a sequence of continuous functions from
a Banach space X to R converges pointwise to a function f , then f must be
continuous at “most” points in X. It is proved by showing that the set of points
in X at which f is discontinuous is thin in X.

Notation 6.1.1 (Set of discontinuities). Let f : (X, d)→ (Y, ρ) be a func-
tion. We denote by D(f) the set of all points in X at which f is discontinuous.

This set D(f) can be characterized nicely in terms of closed sets in X. This
requires reformulating the condition of continuity. Recall from Definition 1.1.19
that diamA := sup { d(x, y) | x, y ∈ A }.

Definition 6.1.2 (Oscillation). Let f : (X, d) → (Y, ρ) be a function and
let A 6= ∅ be a bounded subset in X. The oscillation of f on A, denoted by
Ω(f ;A), is

Ω(f ;A) := diam f(A). (6.1.1)

For x ∈ X, the oscillation of f at x is

ωf (x) := inf
δ>0

Ω(f ;B(x, δ)). (6.1.2)
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It is obvious that if a nonempty set A is a subset of B, then we have
Ω(f ;A) ≤ Ω(f ;B); if x ∈ X, then for all η > 0,

0 ≤ ωf (x) ≤ Ω
(
f ;B(x, η)

)
. (6.1.3)

Proposition 6.1.3. Let f : (X, d)→ (Y, ρ) be a function. Then
1. For each r > 0, the set { a ∈ X | ωf (a) < r } is open in X.

2. For each a ∈ X, f is continuous at a if and only if ωf (a) = 0.

Proof. 1. Let r > 0 and set U := { a ∈ X | ωf (a) < r }. Assume that x0 ∈ U .
We will show that x0 is an interior point of U . Since ωf (x0) < r, there must be
some δ > 0 such that

Ω
(
f ;B(x0, δ)

)
< r. (6.1.4)

Let t ∈ B(x0, δ); then there is some η > 0 such that t ∈ B(t, η) ⊂ B(x0, δ).
Hence, ωf (t) ≤ Ω(f ;B(t, η)) ≤ Ω(f ;B(x0, δ)) < r. This shows that t ∈ U .
Since t ∈ B(x0, δ) was arbitrary, we conclude that B(x0, δ) ⊂ U .

2. Assume that f is continuous at a ∈ X. Let ε > 0 be arbitrary. Then
there is some δ > 0 such that whenever t ∈ B(a, δ), we have ρ(f(t), f(a)) < ε

2 .
Thus, for x, y ∈ B(a, δ),

ρ
(
f(x), f(y)

)
≤ ρ
(
f(x), f(a)

)
+ ρ
(
f(a), f(y)

)
<
ε

2
+
ε

2
= ε. (6.1.5)

Consequently, Ω(f ;B(a, δ)) ≤ ε. Thus, from (6.1.3), 0 ≤ ωf (a) ≤ ε. Because
ε > 0 was arbitrary, we must have

ωf (a) = 0. (6.1.6)

Conversely, assume f is not continuous at a. Then there is some ε0 ≥ 0 such
that for any δ > 0, there is some t ∈ B(a, δ) such that ρ(f(a), f(t)) ≥ ε0. In
particular, Ω(f ;B(a, δ)) ≥ ε0. Since δ > 0 was arbitrary, it follows that

ωf (a) ≥ ε0 > 0. ¤ (6.1.7)

Corollary 6.1.4. Let f : X → Y be a function between metric spaces. Then
the set D(f) of points in X at which f is discontinuous is

D(f) =
∞⋃
n=1

{
a ∈ X

∣∣∣∣ ωf (a) ≥ 1
n

}
. (6.1.8)

Hence, D(f) is a countable union of closed sets in X.

Proof. By part 2 of Proposition 6.1.3, a ∈ D(f) if and only if ωf (a) > 0, in
which case there must be some positive integer n such that ωf (a) ≥ 1

n . Hence,
(6.1.8) holds. Thus, D(f) is a countable union of closed sets in X by part 1 of
Proposition 6.1.3. ¤
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Corollary 6.1.5 says that there is no function f : R → R whose set of dis-
continuities is the irrationals; Example 6.1.10 shows that there is a function
f : R→ R whose set of discontinuities is the rationals.

Corollary 6.1.5. Let Y be any metric space. Then there is no f : Rn → Y
with D(f) = Q..............n.

Proof. Let f : Rn → Y . By Corollary 6.1.4, D(f) is a countable union of
closed sets in Rn. Hence, if D(f) = Q..............n, then Qn is a countable intersection of
open sets in Rn, contradicting Example 1.13.12. ¤

If X is a metric space with the discrete topology, then all maps f defined on
X are continuous and no subset of X is a set of discontinuities for any function
f . Theorem 6.1.7 gives conditions on a metric space that ensure that D(f) ⊂ X
is a countable union of closed sets in X. We will need the following lemma.

Lemma 6.1.6. Let X be a metric space and assume that every open ball in
X is uncountable. Let A be a closed set in X and denote by A0 the set of all
interior points of A. Let C be countable dense set in X. Then for each x ∈ A,
there is some r > 0 such that if 0 < ε < r, the ball B(x, ε) contains u, v, with
v ∈ A \ (C ∩A0) and

u ∈
{
C ∩A0 , if x ∈ A0

X \A , if x ∈ A \A0 (6.1.9)

Proof. Assume first that x ∈ A0. Then there is some r > 0 such that
B(x, ε) ⊂ A for all 0 < ε < r. Let 0 < ε < r be arbitrary. Since C is
dense in X, there is some u ∈ C ∩ B(x, ε). By Proposition 1.2.5, u is also an
interior point of A. Hence, u ∈ C ∩A0. By assumption, B(x, ε) is uncountable.
Because C is countable, there must be some v ∈ B(x, ε) such that v 6∈ C. Thus,
v ∈ A \ (C ∩A0).

Next, assume that x 6∈ A0. Let ε > 0 be arbitrary. Then, of course,
x ∈ B(x, ε) and x ∈ A \ (C ∩ A0). So, we can take v = x. Since x 6∈ A0,
the open ball B(x, ε) must contain some u ∈ X \A. ¤

Theorem 6.1.7 (Sets of discontinuities). Let X be a separable metric
space such that every open ball in X is uncountable and let F ⊂ X. Then F is
a countable union of closed sets in X if and only if there is some f : X → R
such that D(f) = F .

In particular, since every open ball in a nonzero normed space is uncountable
(see Exercise 2.4.9), the theorem holds if X is any nonzero separable normed
space.

Example 6.1.8. Let X be any separable normed space. Then there is some
dense set S of X and a function f : X → R such that f is discontinuous
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at each point of S but continuous at every point of X \ S. To see this, let
S = {x1, x2, . . . } be a countable dense subset of X. Then S is a countable
union of closed sets in X. Hence, by Theorem 6.1.7, such an f exists. 4

Example 6.1.9. In Theorem 6.1.7, it is important that every open ball in X
be uncountable. If we set X := Q with the discrete metric, then the set N is a
countable union of closed sets in X but there is no f : X → R with D(f) = N,
since every f : X → R is continuous on all of X. 4

Proof of Theorem 6.1.7. The “if” part was proved in Corollary 6.1.4. For
the “only if” part, set F :=

⋃∞
k=1 Fk, where each Fk is a closed set in X. We

will show that there is some f : X → R such that D(f) = F .
Set A1 := F1, A2 := A1 ∪ F2, A3 := A2 ∪ F3, and so on. Then (An) is a

sequence of closed sets in X with An−1 ⊂ An and

F =
∞⋃
n=1

An. (6.1.10)

Since X is separable, there is a countable dense set C in X. Set

fn(x) :=
{

1 , if x ∈ An \ (C ∩A0
n)

0 , otherwise. (6.1.11)

It is clear that fn = 0 on the open set X \An, so fn is continuous at all points
in X \ An. Let x0 ∈ An. Apply Lemma 6.1.6 to conclude that for all ε > 0
sufficiently small, there are u, v in B(x0, ε) such that u ∈ (X \ An) ∪ (C ∩ A0

n)
and v ∈ An \ (C ∩A0

n). Thus,

Ω
(
fn;B(x0, ε)

)
≥ fn(v)− fn(u) = 1. (6.1.12)

Since (6.1.12) holds for all sufficiently small ε > 0, we have ωfn(x0) = 1. Con-
sequently, fn is discontinuous at x0. Since n and x0 ∈ An were arbitrary, we
have thus shown that

D(fn) = An for all n ∈ N. (6.1.13)

Each fn is an element of B(X), the Banach space of all bounded functions on
X, and ‖fn‖ = 1. So

∞∑
n=1

‖4−nfn‖ <∞. (6.1.14)

By the Weierstrass test for uniform convergence (Corollary 2.8.3), there is some
f ∈ B(X) such that

f =
∞∑
n=1

4−nfn uniformly on X. (6.1.15)


