
Chapter 5

The Banach space C(X)

In this chapter we single out one of the most extensively studied Banach spaces,
C(X) – the Banach space of all continuous complex-valued functions on a com-
pact topological space X. In the case X = [a, b], we will give several important
results, including theorems of Korovkin and Bernstein. These will lead us to the
Weierstrass approximation theorem, which implies the separability of C[a, b].

When X is a general compact topological space, we will study sub-collections
of C(X) that are closed under “multiplication” in C(X); these collections are
the “sub-algebras” in C(X). This will lead to the Stone-Weierstrass theorem, a
far-reaching generalization of the Weierstrass approximation theorem.

We will begin by defining equicontinuity, a concept needed for the Arzela-
Ascoli theorem, which gives conditions for when a subset of C(X) is compact.

5.1 The Arzela-Ascoli theorem

The result behind all of calculus is the statement that a subset of Rn is compact
if and only if it is closed and bounded; this underlies such critical results as the
mean value theorem, the uniform continuity of functions on compact sets (which
makes Riemann sums converge and thus allows the definition of the integral),
the fundamental theorem of algebra, and the spectral theorem for symmetric
matrices.

In the function space setting of functional analysis, the analogous statement
is the Arzela-Ascoli theorem, which says that if X is compact, a subset of C(X)
is compact if and only if it is closed, bounded, and equicontinuous.

Equicontinuity

Let X be a topological space and (Z, ρ) a metric space. Then f : X → Z is
continuous if for each x ∈ X and for all ε > 0, there is some neighborhood U of
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x such that

f(U) ⊂ B
(
f(x), ε

)
. (5.1.1)

Let S ⊂ C(X,Z), where as usual, C(X,Z) denotes the collection of all contin-
uous functions X → Z. Then (5.1.1) holds for all f ∈ S, but in general, U
depends on f . The case where we can choose a single U for all f ∈ S warrants
a special name.

Definition 5.1.1 (Equicontinuity). Let X be a topological space, Z a
metric space, and S ⊂ C(X,Z). Then S is equicontinuous if for each x ∈ X
and each ε > 0, there is a neighborhood U of x such that for all f ∈ S,

f(U) ⊂ BZ(f(x), ε).

A sequence (fn) in C(X,Z) is equicontinuous if {fn} is equicontinuous.

Example 5.1.2. For each n ∈ N, let fn : [0, 1]→ R be defined by fn(x) := xn.
Then (fn) is not equicontinuous. Indeed, let U be any neighborhood U of 1 in
[0, 1]. Find δ > 0 such that y := 1− δ ∈ U . Then

|fn(y)− fn(1)| = 1− (1− δ)n > 1
2

for all n sufficiently large. 4

If X is a metric space, we can rewrite Definition 5.1.1: Let (X, d) and (Z, ρ)
be metric spaces, and S ⊂ C(X,Z). Then S is equicontinuous if for all x ∈ X
and each ε > 0, there is some δ > 0 such that for all f ∈ S and all y ∈ X,

d(x, y) < δ =⇒ ρ
(
f(x), f(y)

)
< ε. (5.1.2)

The metric on X lets us compare the distance between any two points in X,
so in this setting we can also define uniform equicontinuity :

Definition 5.1.3 (Uniform equicontinuity). Let (X, d) and (Z, ρ) be met-
ric spaces. Then S ⊂ C(X,Z) is uniformly equicontinuous if for if each ε > 0,
there is some δ > 0 such that for all x, y ∈ X and all f ∈ S,

d(x, y) < δ =⇒ ρ
(
f(x), f(y)

)
< ε. (5.1.3)

(This works because the metric allows us to choose a fixed δ that works for
all points in X. Uniform equicontinuity cannot be defined when X is only a
topological space, because in that setting we have no way to compare the sizes
of neighborhoods around different points in X.)

Example 5.1.4 (Uniform equicontinuity). Let S be any collection of real-
valued functions on [a, b] and assume that there is some M < ∞ such that
whenever x ∈ (a, b), we have |f ′(x)| ≤ M for all f ∈ S. Then S is uniformly
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equicontinuous. Indeed, given ε > 0, set δ := ε
2M . Then for all x, y ∈ [a, b] with

|x− y| < δ, we have (by the mean value theorem)

|f(x)− f(y)| ≤Mδ < ε for all f ∈ S. 4

Remark. This is a good occasion to consider the importance of the order of
quantifiers. Let (X, d), (Z, ρ) be metric spaces and F is a collection of functions
X → Z. The four very different concepts below – continuity, uniform continuity,
equicontinuity, and uniform equicontinuity – all differ only by the order of the
quantifiers:

1. All elements of F are continuous, i.e., F ⊂ C(X,Z), if

∀f ∈ F , ∀x ∈ X, ∀ε > 0, ∃δ > 0 such that ∀y ∈ X,
d(x, y) < δ =⇒ ρ

(
f(x), f(y)

)
< ε.

2. All f ∈ F are uniformly continuous if

∀f ∈ F , ∀ε > 0, ∃δ > 0 such that ∀x, y ∈ X,
d(x, y) < δ =⇒ ρ

(
f(x), f(y)

)
< ε.

3. F ⊂ C(X,Z) is equicontinuous if

∀x ∈ X, ∀ε > 0, ∃δ > 0 such that ∀f ∈ F , ∀y ∈ X,
d(x, y) < δ =⇒ ρ

(
f(x), f(y)

)
< ε.

4. F ⊂ C(X,Z) is uniformly equicontinuous if

∀ε > 0, ∃δ > 0 such that ∀x, y ∈ X, ∀f ∈ F ,
d(x, y) < δ =⇒ ρ

(
f(x), f(y)

)
< ε.

Note that one can reverse the order of consecutive universal quantifiers and
consecutive existential quantifiers, but changing the order of a ∀ and a ∃ changes
the meaning. 4

The next result says that when X is a compact metric space, equicontinuity
and uniform equicontinuity are equivalent.

Proposition 5.1.5. Let (X, d), (Z, ρ) be metric spaces. Assume that X is com-
pact and S ⊂ C(X,Z). Then the following are equivalent:

1. S is equicontinuous
2. S is uniformly equicontinuous.

Proof. It is clear that if S is uniformly equicontinuous then it is equicontin-
uous. Conversely, assume S is equicontinuous. Then given any ε > 0 and any
x ∈ X, there is some ηx > 0 such that f(BX(x, ηx)) ⊂ BZ(f(x), ε) for all f ∈ S.
Clearly, the collection O := {BX(x, ηx) | x ∈ X } is an open covering for X.
Since X is compact, Theorem 1.11.7 implies that there is some δ > 0 such that
whenever A ⊂ X and diamA < δ, then A is contained entirely in some element
of O. Thus, if x, y ∈ X and d(x, y) < δ, then ρ(f(x), f(y)) < ε for all f ∈ S.
¤
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Example 5.1.6 (Fredholm integral operator). Let K : [a, b] × [c, d] → R
be continuous and consider the Fredholm integral operator FK of Section 3.2:

(FKg)(y) :=
∫ b

a

K(y, t) g(t) dt for all y ∈ [a, b]. (5.1.4)

Let S ⊂ C([a, b],R) be bounded. We will show that FK(S) is a uniformly
equicontinuous subset of C([a, b],R). To see this, let ε > 0 be given and denote
the sup-norm on C([a, b],R) by ‖ ‖. Choose C < ∞ such that ‖g‖ ≤ C for all
g ∈ S. It was shown in (3.2.8) that there is some δ > 0 such that whenever
y1, y2 are in [a, b] with |y1 − y2| < δ, then for all g ∈ S,

|(FKg)(y1)− (FKg)(y2)| ≤ ε‖g‖ (b− a) ≤ εC(b− a). (5.1.5)

Since ε > 0 was arbitrary, FK(S) is uniformly equicontinuous. (We proved this
directly, but since [a, b] is compact, it would have been enough, by Proposition
5.1.5, to prove that FK(S) is equicontinuous. Note that we used the compactness
of [a, b] in the proof, when we referred to (3.2.8); that equation depends on the
compactness of [a, b]× [c, d] to infer that K is uniformly continuous.) 4

Equicontinuity and uniform boundedness

Recall (Definition 1.13.18) the notions of pointwise and uniform boundedness
for complex-valued functions defined on a set X. Exercise 5.1.19 asks you to
show that for linear maps between normed spaces, uniform equicontinuity and
uniform boundedness are equivalent. Proposition 5.1.8 asserts that if X is a
compact topological space and S ⊂ C(X) is pointwise bounded and equicon-
tinuous, then S is uniformly bounded on X. It is our third uniform bounded-
ness principle; the first two were Proposition 1.13.20 and Corollary 3.4.4 (the
Banach-Steinhaus theorem). We will use the following lemma when we prove
Proposition 5.1.8.

Lemma 5.1.7. Let X be a compact topological space and let S ⊂ C(X) be
equicontinuous. Then for each ε > 0, there are x1, . . . , xn in X such that

f(X) ⊂
n⋃
k=1

B(f(xk), ε) for all f ∈ S. (5.1.6)

Proof. Let ε > 0 be given. For each x ∈ X, there is a neighborhood Ux of x
such that

f(Ux) ⊂ B(f(x), ε) for all f ∈ S. (5.1.7)

The collection {Ux |x ∈ X} is an open cover for X. Since X is compact, there
exist x1, . . . , xn in X such that X =

⋃n
k=1 Uxk . Hence, for all f ∈ S,

f(X) =
n⋃
k=1

f(Uxk) ⊂
n⋃
k=1

B
(
f(xk), ε

)
¤ (5.1.8)


