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Theorem 4.5.1 (Hilbert spaces). Let (X, 〈 , 〉) be an inner product space
over K. The following statements are equivalent:

1. X is a Hilbert space.

2. Every closed vector subspace M of X has the minimum distance
property: for every x ∈ X, there is some PMx ∈M such that

d(x, M) = ‖x− PMx‖.

3. X has the orthogonal decomposition property: if M ⊂ X is a closed
vector subspace, then M and M⊥ are complementary subspaces in X.

4. X has the Riesz representation property: every continuous linear
functional on X is gz for some z ∈ X, where gz(x) := 〈x, z〉 for
all x ∈ X.

Some of these implications have special names:

1 =⇒ 2 is the minimum distance theorem.
1 =⇒ 3 is usually called the projection theorem.
1 =⇒ 4 is the Riesz representation theorem.

Proof. 2 =⇒ 3 : The minimum distance property implies the orthogonal
decomposition property. This is Proposition 4.4.12.

3 =⇒ 4 : The orthogonal decomposition property implies the Riesz represen-
tation property. This is Proposition 4.4.14

4 =⇒ 1 : If X has the Riesz representation property, X is a Hilbert space.
We will see that if X is not a Hilbert space, then there is some continuous linear
functional on X that is not of the form gz for any z ∈ X.

So assume that (X, 〈 , 〉) is not a Hilbert space. By part 1 of Proposition
4.3.5, there is a Hilbert space completion (H, 〈 , 〉)′) of X. Hence, there is a
proper dense vector subspace Y of H and a unitary isomorphism T : X → Y .

Since Y 6= H, we can choose some h0 ∈ H with h0 6∈ Y . Define f : Y → K
by f(y) := 〈y, h0〉′ for all y ∈ Y . Then f is a continuous linear functional on Y .

The remainder of the proof consists of two parts:

(a) We will first verify that Y does not have the Riesz representation property,
by showing that there is no u ∈ Y for which

f(y) = 〈y, u〉′ for all y ∈ Y. (4.5.1)

This is the heart of the proof.

(b) Then using the fact that X and Y are unitarily isomorphic together with
part (a), we will show that X too does not have the Riesz representation
property.
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Part (a) If there were such a u ∈ Y , then we would have

〈y, h0 − u〉′ = 0 for all y ∈ Y. (4.5.2)

But then, by continuity of inner products, we must have

〈y, h0 − u〉′ = 0 for all y ∈ Y = H, (4.5.3)

and this would imply that h0 − u = 0, a contradiction since h0 6∈ Y.

Part (b) Now define η : X → K by

η(x) := f(Tx). (4.5.4)

We will show that η is a continuous linear functional on X and η 6= gz for any
z ∈ X. Since both f and T are continuous, η is a continuous linear functional
on X. If η = gz for some z ∈ X, then gz = f ◦ T , so that

gz ◦ T−1 = f. (4.5.5)

Because T is a unitary isomorphism, so is T−1, and (4.5.5) would imply that

f(y) = 〈T−1(y), z〉 =
〈

T−1y, T−1(Tz)
〉

= 〈y, Tz〉′ for all y ∈ Y.

(4.5.6)

Since Tz ∈ Y , this contradicts part (a). Hence, η 6= gz for any z ∈ X. Conse-
quently, (4) implies (1).

1 =⇒ 2 : Every closed vector subspace of a Hilbert space has the minimum
distance property.

This proof uses the parallelogram law. Let M ⊂ X be a closed vector
subspace and y0 ∈ X. Put d := d(y0, M). Choose (xn) ⊂M with ‖xn−y0‖ → d.
If (xn) is Cauchy, then since X is complete, there is some m0 ∈ M = M such
that xn → m0, and thus, by the continuity of the norm,

‖m0 − y0‖ =
∥∥∥ lim

n→∞
xn − y0

∥∥∥ = lim
n→∞

‖xn − y0‖ = d. (4.5.7)

Thus, we will show that (xn) is Cauchy. Since M is a vector subspace, xm+xn

2
is in M . Thus, ‖y0 − xm+xn

2 ‖ ≥ d. Hence, by the parallelogram law,

‖xn − xm‖2 = ‖(y0 − xm)− (y0 − xn)‖2

= 2
(
‖y0 − xm‖2 + ‖y0 − xn‖2

)
− ‖(y0 − xm) + (y0 − xn)‖2

= 2
(
‖y0 − xm‖2 + ‖y0 − xn‖2

)
− 4

∥∥∥∥y0 −
xm + xn

2

∥∥∥∥2

≤ 2
(
‖y0 − xm‖2 + ‖y0 − xn‖2

)
− 4d2. (4.5.8)

Hence, ‖xn − xm‖ → 2(d2 + d2) − 4d2 = 0 as n, m → ∞, so (xn) is Cauchy.
Consequently, M has the minimum distance property. ¤


