Theorem 4.5.1 (Hilbert spaces). Let (X, \langle , \rangle) be an inner product space over \mathcal{K} . The following statements are equivalent:

- 1. X is a Hilbert space.
- 2. Every closed vector subspace M of X has the minimum distance property: for every $x \in X$, there is some $P_M x \in M$ such that

$$d(x,M) = \|x - P_M x\|.$$

- 3. X has the orthogonal decomposition property: if $M \subset X$ is a closed vector subspace, then M and M^{\perp} are complementary subspaces in X.
- 4. X has the Riesz representation property: every continuous linear functional on X is g_z for some $z \in X$, where $g_z(x) := \langle x, z \rangle$ for all $x \in X$.

Some of these implications have special names:

 $1 \implies 2$ is the minimum distance theorem.

- $1 \implies 3$ is usually called the *projection theorem*.
- $1 \implies 4$ is the *Riesz representation theorem*.

PROOF. $2 \implies 3$: The minimum distance property implies the orthogonal decomposition property. This is Proposition 4.4.12.

 $3 \Longrightarrow 4$: The orthogonal decomposition property implies the Riesz representation property. This is Proposition 4.4.14

 $4 \implies 1$: If X has the Riesz representation property, X is a Hilbert space. We will see that if X is not a Hilbert space, then there is some continuous linear functional on X that is not of the form g_z for any $z \in X$.

So assume that (X, \langle , \rangle) is not a Hilbert space. By part 1 of Proposition 4.3.5, there is a Hilbert space completion $(H, \langle , \rangle)'$ of X. Hence, there is a proper dense vector subspace Y of H and a unitary isomorphism $T: X \to Y$.

Since $Y \neq H$, we can choose some $h_0 \in H$ with $h_0 \notin Y$. Define $f: Y \to \mathcal{K}$ by $f(y) := \langle y, h_0 \rangle'$ for all $y \in Y$. Then f is a continuous linear functional on Y.

The remainder of the proof consists of two parts:

(a) We will first verify that Y does not have the Riesz representation property, by showing that there is no $u \in Y$ for which

$$f(y) = \langle y, u \rangle' \quad \text{for all } y \in Y. \tag{4.5.1}$$

This is the heart of the proof.

(b) Then using the fact that X and Y are unitarily isomorphic together with part (a), we will show that X too does not have the Riesz representation property.

Part (a) If there were such a $u \in Y$, then we would have

$$\langle y, h_0 - u \rangle' = 0 \quad \text{for all } y \in Y. \tag{4.5.2}$$

But then, by continuity of inner products, we must have

$$\langle y, h_0 - u \rangle' = 0 \quad \text{for all } y \in \overline{Y} = H,$$

$$(4.5.3)$$

and this would imply that $h_0 - u = \mathbf{0}$, a contradiction since $h_0 \notin Y$. Part (b) Now define $\eta : X \to \mathcal{K}$ by

$$\eta(x) := f(Tx). \tag{4.5.4}$$

We will show that η is a continuous linear functional on X and $\eta \neq g_z$ for any $z \in X$. Since both f and T are continuous, η is a continuous linear functional on X. If $\eta = g_z$ for some $z \in X$, then $g_z = f \circ T$, so that

$$g_z \circ T^{-1} = f. \tag{4.5.5}$$

Because T is a unitary isomorphism, so is T^{-1} , and (4.5.5) would imply that

$$f(y) = \langle T^{-1}(y), z \rangle = \left\langle T^{-1}y, T^{-1}(Tz) \right\rangle$$

= $\langle y, Tz \rangle'$ for all $y \in Y$. (4.5.6)

Since $Tz \in Y$, this contradicts part (a). Hence, $\eta \neq g_z$ for any $z \in X$. Consequently, (4) implies (1).

 $1 \Longrightarrow 2$: Every closed vector subspace of a Hilbert space has the minimum distance property.

This proof uses the parallelogram law. Let $M \subset X$ be a closed vector subspace and $y_0 \in X$. Put $d := d(y_0, M)$. Choose $(x_n) \subset M$ with $||x_n - y_0|| \to d$. If (x_n) is Cauchy, then since X is complete, there is some $m_0 \in \overline{M} = M$ such that $x_n \to m_0$, and thus, by the continuity of the norm,

$$||m_0 - y_0|| = \left| \lim_{n \to \infty} x_n - y_0 \right|| = \lim_{n \to \infty} ||x_n - y_0|| = d.$$
(4.5.7)

Thus, we will show that (x_n) is Cauchy. Since M is a vector subspace, $\frac{x_m+x_n}{2}$ is in M. Thus, $||y_0 - \frac{x_m+x_n}{2}|| \ge d$. Hence, by the parallelogram law,

$$||x_n - x_m||^2 = ||(y_0 - x_m) - (y_0 - x_n)||^2$$

= 2 (||y_0 - x_m||^2 + ||y_0 - x_n||^2) - ||(y_0 - x_m) + (y_0 - x_n)||^2
= 2 (||y_0 - x_m||^2 + ||y_0 - x_n||^2) - 4 ||y_0 - \frac{x_m + x_n}{2}||^2
\leq 2 (||y_0 - x_m||^2 + ||y_0 - x_n||^2) - 4d^2. (4.5.8)

Hence, $||x_n - x_m|| \to 2(d^2 + d^2) - 4d^2 = 0$ as $n, m \to \infty$, so (x_n) is Cauchy. Consequently, M has the minimum distance property. \Box

330