Chapter 4

Inner product spaces

In this chapter we study a special class of normed spaces – those whose norms are induced by inner products. These spaces are well behaved in the sense that they share with \mathbb{R}^2 certain geometrically desirable properties. For instance, the standard norm on \mathbb{R}^2 obeys the parallelogram law:

$$\|x - y\|^2 + \|x + y\|^2 = 2(\|x\|^2 + \|y\|^2),$$

(4.0.1)

where x and y are adjacent sides of the parallelogram, so that $\|x - y\|$ is the length of one diagonal and $\|x + y\|$ is the length of the other.

This law does not hold in an arbitrary normed space. Consider $C[0,1]$ with the sup-norm. For all $t \in [0,1]$, let $x(t) := t, y(t) := 1 - t$. Then $x, y \in C[0,1]$ but $\|x - y\|^2 + \|x + y\|^2 = 2$ and $2(\|x\|^2 + \|y\|^2) = 4$.

But norms induced by an inner product do satisfy the parallelogram law.

Other desirable properties are restricted to a special class of inner product spaces: complete inner product spaces, called Hilbert spaces. For instance, let M be the x-axis in \mathbb{R}^2, and let p be the point on the y-axis where $y = 1$. In \mathbb{R}^2 with the standard norm, the origin is the unique point in M closest to p, and $\|p - 0\| = 1$. In \mathbb{R}^2 with the norm $\|x\|_\infty = \max\{|x_1|, |x_2|\}$, this isn’t true: any point on the x-axis in the interval $[-1, 1]$ is distance 1 from p. But Hilbert spaces behave in this regard like \mathbb{R}^2 with the standard norm.

Why is this desirable? Imagine that we want to approximate a function $x \in X$ and that $M \subset X$ consists of polynomials of degree at most n. Then the distance from x to M represents how well we can approximate the function by a polynomial in M. Clearly it is interesting to know whether there is a unique polynomial that provides the best possible approximation.

4.1 Definitions and examples

We denote by \bar{t} the complex conjugate of a complex number t: if $t = a + bi$, where $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$, then $\bar{t} = a - bi$. Of course, $t = \bar{t}$ if and only if t is real.
Definition 4.1.1 (Inner product). Let \(X \) be a vector space over \(K \) (either \(\mathbb{R} \) or \(\mathbb{C} \)). An inner product on \(X \) is a function

\[
\langle \cdot, \cdot \rangle : X \times X \to K
\]

that assigns to each pair \((x, y) \in X^2\) a number in \(K \), denoted \(\langle x, y \rangle \), satisfying the following properties.

1. Conjugate symmetry: \(\langle x, y \rangle = \overline{\langle y, x \rangle} \).
2. Linearity with respect to the first variable: for all \(a, b \in K \),

\[
\langle ax_1 + bx_2, y \rangle = a\langle x_1, y \rangle + b\langle x_2, y \rangle.
\]
3. Positivity: \(\langle x, x \rangle \geq 0 \); moreover, \(\langle x, x \rangle = 0 \) if and only if \(x = 0 \).

The pair \((X, \langle \cdot, \cdot \rangle)\) is an inner product space over \(K \). If \(K = \mathbb{C} \), it is a complex inner product space; if \(K = \mathbb{R} \), it is a real inner product space. An inner product space is finite dimensional if the vector space \(X \) is finite dimensional. Otherwise, it is infinite dimensional. When it is clear what the inner product is, we may simply write “\(X \)”.

Remarks 4.1.2.

1. Property 1 implies that \(\langle x, x \rangle \) is real, so that property 3 makes sense; complex numbers that are not real are neither positive nor negative.
2. In some treatments, particularly by physicists, the inner product is linear with respect to the second variable:

\[
\langle x, ay_1 + by_2 \rangle = a\langle x, y_1 \rangle + b\langle x, y_2 \rangle.
\]

Just as the metric on a set was motivated by the “distance function” on \(\mathbb{R} \), the inner product was motivated by the dot product. A common theme in mathematics is abstraction — isolating the essential properties of a concept in a concrete setting and using them to extend the concept to a more general setting. The hardest part is identifying the essential properties.

Example 4.1.3 (Dot product as inner product).

1. Define \(\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) by

\[
\langle x, y \rangle := x_1 y_1 + \cdots + x_n y_n.
\]

Then \(\langle \cdot, \cdot \rangle \), the dot product on \(\mathbb{R}^n \), is an inner product on \(\mathbb{R}^n \), and \((\mathbb{R}^n, \langle \cdot, \cdot \rangle)\) is an inner product space over \(\mathbb{R} \).

2. Define \(\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C} \) by

\[
\langle z, w \rangle := z_1 \overline{w_1} + \cdots + z_n \overline{w_n}.
\]

Then \((\mathbb{C}^n, \langle \cdot, \cdot \rangle)\) is an inner product space over \(\mathbb{C} \). Note the complex conjugate.
Whenever we consider \mathbb{R}^n and \mathbb{C}^n as inner product spaces, these are the inner products we mean.

Example 4.1.4 ($CL^2[a,b]$). Let $a < b$. Define $\langle \cdot, \cdot \rangle : C[a,b] \times C[a,b] \to \mathbb{C}$ by
\[
\langle f, g \rangle := \int_a^b f(t) \overline{g(t)} \, dt.
\] (4.1.3)
Then $(C[a,b], \langle \cdot, \cdot \rangle)$ is an inner product space. We will denote this space $CL^2[a,b]$, the C to suggest continuity and L^2 because that is standard notation for the normed space of “square integrable” functions: functions f such that $\int_a^b |f(t)|^2 < \infty$. △

Example 4.1.5 (l^2 as an inner product space). Recall that the set l^2 consists of sequences $(x_j) \subset \mathbb{C}$ such that $\sum_{j=1}^{\infty} |x_j|^2 < \infty$. By Hölder’s inequality (Inequality 0.4),
\[
\sum_{j=1}^{\infty} |x_j| |\overline{y_j}| < \infty \text{ for all } x = (x_j), y = (y_j) \in l^2.
\] (4.1.4)
We know from calculus that for a sequence of complex numbers, absolute convergence implies convergence, so we can define $\langle \cdot, \cdot \rangle : l^2 \times l^2 \to \mathbb{C}$ by
\[
\langle x, y \rangle := \sum_{j=1}^{\infty} x_j \overline{y_j}.
\] (4.1.5)
Then $(l^2, \langle \cdot, \cdot \rangle)$ is an inner product space. Whenever we consider l^2 as an inner product space, this is the inner product we mean. △

Example 4.1.6. Let Mat (n, m) denote the vector space of $n \times m$ matrices with real entries, and denote by tr the trace of a square matrix, i.e., the sum of the entries on the main diagonal. For example, $\text{tr} \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = a_1 + b_2$. Then if A and B are elements of Mat (n, m),
\[
\langle A, B \rangle := \text{tr}(AB^\top)
\] (4.1.6)
defines an inner product on Mat (n, m), as you are asked to show in Exercise 4.1.24.

Proposition 4.1.7 (Basic properties of inner products). Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space over K, with $x, y, y_1, y_2 \in X$ and $a, b \in K$. Then
1. $\langle 0, y \rangle = 0 = \langle x, 0 \rangle$.
2. $\langle x, ay_1 + by_2 \rangle = a\langle x, y_1 \rangle + b\langle x, y_2 \rangle$.
3. $\langle ax, ax \rangle = |a|^2 \langle x, x \rangle$.
4. If $x_0, z_0 \in X$ and $\langle x_0, y \rangle = \langle z_0, y \rangle$ for all $y \in X$, then $x_0 = z_0$.

In particular, $\langle x_0, y \rangle = 0$ for all $y \in X$ if and only if $x_0 = 0$.

Remark. Any function satisfying property 2 is said to be is \textit{conjugate-linear} with respect to the second variable. \(\triangle\)

Proof. 1. \(\langle 0, y \rangle = \langle 00, y \rangle = 0 \langle 0, y \rangle = 0\) for all \(y \in X\). Thus \(\langle x, 0 \rangle = \langle 0, x \rangle = 0\) for all \(x \in X\).

2. Just compute:
\[
\langle x, ay_1 + by_2 \rangle = \overline{\langle ay_1 + by_2, x \rangle} = \overline{a \langle y_1, x \rangle + b \langle y_2, x \rangle} = \overline{a \langle x, y_1 \rangle + b \langle x, y_2 \rangle}.
\]

3. By part 2, \(\langle ax, ax \rangle = \overline{a \langle ax, x \rangle} = \overline{a^2 \langle x, x \rangle}.
\]

4. If \(\langle x_0, y \rangle = \langle z_0, y \rangle\) for all \(y \in X\), then \(\langle x_0 - z_0, y \rangle = 0\) for all \(y \in X\). In particular,
\[
\langle x_0 - z_0, x_0 - z_0 \rangle = 0. \tag{4.1.7}
\]
Thus, \(x_0 - z_0 = 0\), hence, \(x_0 = z_0\). The remaining assertion follows easily because
\[
\langle x_0, y \rangle = 0 \text{ for all } y \in X \iff \langle x_0, y \rangle = \langle 0, y \rangle \text{ for all } y \in X \iff x_0 = 0. \quad \square
\]

Complex inner product spaces are generally easier to deal with than real inner product spaces. This is illustrated by the next example.

Example 4.1.8. Let \((X, \langle \ , \ \rangle)\) be a complex inner product space, and let \(Q : X \to X\) be any linear map such that \(\langle Qv, v \rangle = 0\) for all \(v \in X\). Let us see that \(Q = 0\), the zero map. For all \(x, y \in X\) and all \(\alpha \in \mathbb{C}\), we have
\[
0 = \langle Q(\alpha x + y), \alpha x + y \rangle = \langle Q(\alpha x) + Qy, \alpha x + y \rangle
= \langle Q(\alpha x), \alpha x \rangle + \langle Q(\alpha x), y \rangle + \langle Qy, \alpha x \rangle + \langle Qy, y \rangle
= \alpha \langle Qx, x \rangle + \overline{\alpha} \langle Qy, x \rangle. \tag{4.1.8}
\]
Put first \(\alpha = 1\) and then \(\alpha = i\) in the equation \(0 = \alpha \langle Qx, y \rangle + \overline{\alpha} \langle Qy, x \rangle\) to deduce that \(\langle Qy, x \rangle = 0\) for all \(x, y \in X\). Hence, by Proposition 4.1.7, \(Qy = 0\) for all \(y \in X\), so \(Q = 0\). Note that this is not the case when \((X, \langle \ , \ \rangle)\) is a real inner product space. For instance, let \(Q : \mathbb{R}^2 \to \mathbb{R}^2\) rotate each \(x \in \mathbb{R}^2\) by 90 degrees. \(\triangle\)

Norms induced by inner products

Note that the Euclidean norm of a vector \(x \in \mathbb{R}^n\) is the square root of the standard dot product of \(x\) with itself:
\[
\|x\| = \sqrt{x_1^2 + \cdots + x_n^2} = \sqrt{\langle x, x \rangle}, \tag{4.1.9}
\]