
Chapter 2

Normed spaces and
topological vector spaces

Functional analysis is mainly an attempt to do linear algebra in infinite-dimen-
sional vector spaces. This requires generalizing such basic notions as linear
independence, span, dimension, basis, linear transformation, eigenvectors, and
eigenvalues.

In particular, we will want to be able to express a vector x in an infinite-
dimensional vector space as the infinite series x =

∑∞
k=1 ckvk, where the ck are

scalars and the vk are basis vectors. For such an expression to make sense, the
infinite sum must converge. But to speak of convergence we need to be able
to measure “distance”. In this chapter we introduce normed spaces – spaces
that are both metric spaces and vector spaces, where the vector space structure
interacts with the metric in a natural and meaningful way.

But first, in Section 2.1, we will give some examples of linear maps defined on
infinite-dimensional vector spaces. In Section 2.2 we will discuss Hamel bases,
which don’t require the structure of a norm.

2.1 Linear operators on function spaces

We will assume that you are familiar with finite-dimensional vector spaces,
which are all essentially the same as Cn (more precisely, any n-dimensional
vector space over C is isomorphic to Cn). For a brief review, see Appendix B.
As stated in Theorem B.5.2, every linear transformation T : Cn → Cm is given
by multiplication by the m× n matrix [T ]:

T (v) = [T ]v, (2.1.1)

where the ith column of [T ] is T (ei). Moreover, using the “abstract to concrete
function” discussed in Appendix B.5, a linear transformation between finite-
dimensional abstract vector spaces can be translated into a linear transformation
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from Cn to Cm. Thus in finite dimensions, all linear transformations can be
understood in terms of matrix multiplication.

Linear functional analysis is largely concerned with linear transformations
between infinite-dimensional vector spaces. Often, but not always, the elements
of these vector spaces are functions; in that case the spaces are called, naturally
enough, function spaces.

In greatest generality, one can consider the collection F(X,W ) of all func-
tions f : X → W where X and W are arbitrary nonempty sets. When W is a
vector space over K, the collection F(X,W ) can be turned into a vector space
over K in a natural way: if f, g are in F(X,W ) and α ∈ K, define addition and
scalar multiplication by

(f + g)(x) := f(x) + g(x) and (αf)(x) := αf(x). (2.1.2)

We call these operations pointwise addition and pointwise multiplication. Then
F(X,W ) is a vector space over K.

However, if X is infinite, then F(X,W ) is too big for us to say anything
interesting about it; functions in F(X,W ) can be too wild. In practice, we will
be interested in vector subspaces of F(X,C). In particular, we will be interested
in linear maps that can be defined on such subspaces.

Recall that if X, Y are vector spaces over the same field K, then a function
f : X → Y is linear if for all x, y in X and all α ∈ K,

f(x+ y) = f(x) + f(y) and f(αx) = αf(x). (2.1.3)

Here are three important examples of linear maps defined on subspaces of
F(X,W ).

Example 2.1.1 (Integration). The collection R[a, b] of all real-valued Rie-
mann integrable functions on a bounded, closed interval [a, b] ⊂ R is a vector
subspace of F([a, b],R). In particular, R[a, b] is a vector space over R.

Define T : R[a, b]→ R by

Tf :=
∫ b

a

f(x) dx. (2.1.4)

Then T is a linear map, i.e., integration is a linear operation. 4

Example 2.1.2 (Linear differential operators). For each positive integer
n, let Cn([a, b],R) be the collection of all functions f ∈ F([a, b],R) for which
the nth derivative f (n) exists and is continuous on [a, b]. (At the endpoints,
these are 1-sided derivatives.) Then Cn([a, b],R) is also a vector subspace of
F([a, b],R). Define Dn : Cn([a, b],R)→ F([a, b],R) by

Dn(f) := f (n). (2.1.5)

Then Dn is linear, i.e., differentiation is a linear operation.
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More generally, let p0, . . . , pn−1 be real-valued functions on I := [a, b]. Con-
sider the map T : Cn(I,R)→ F(I,R) defined by

Tf := f (n) + pn−1f
(n−1) + · · ·+ p1f

′ + p0f. (2.1.6)

This map T is sometimes denoted by

Dn + pn−1D
n−1 + · · ·+ p1D

1 + p0. (2.1.7)

It is easy to verify that T is linear. We call T an nth-order linear differential
operator. Linear differential operators arise in the study of linear differential
equations, which we study in Section 6.3. 4

Example 2.1.3 (The Laplace transform). For fixed c ∈ R, let Ec denote
the collection of all continuous real-valued functions f on [0,∞) of exponential
order c: there is a real constant M (depending on f) such that

|f(x)| ≤Mecx for all x ∈ [0,∞). (2.1.8)

If M1, M2, and x are nonnegative, then M1e
cx + M2e

cx ≤ (M1 + M2)ecx. It
follows that f+g is in Ec whenever both f and g are in Ec. Similarly, Ec is closed
under scalar multiplication. Hence, Ec is a vector subspace of F([0,∞),R).

The Laplace transform is a map defined on Ec. It provides a tool for solving
linear initial-value problems, discussed in Chapter 6. Let f ∈ Ec. Then there is
a real constant M such that

|f(x)| ≤Mecx for all x ∈ [0,∞). (2.1.9)

Hence, for any p > 0, we have∫ p

0

|e−stf(t)| dt ≤M
∫ p

0

e−stect dt

=
M

c− s
[
e(c−s)p − 1

] (2.1.10)

Thus, for s > c, the limit

lim
p→∞

∫ p

0

|e−stf(t)| dt (2.1.11)

exists. In particular, the improper integral∫ ∞
0

e−stf(t) dt := lim
p→∞

∫ p

0

e−stf(t) dt (2.1.12)

exists for (at least) all s > c. Thus, we may define (Lf) : (c,∞)→ R by

(Lf)(s) :=
∫ ∞

0

e−stf(t) dt . (2.1.13)
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Then

L : Ec → F((c,∞),R). (2.1.14)

The map L is the Laplace transform; Lf is called the Laplace transform of f .
Let f, g be in Ec and let c be a real number. Then it is clear that L(cf) = c(Lf).
Also, L(f1 + f2)(s) = (Lf1)(s) + (Lf2)(s) whenever s ∈ (c,∞). Hence, L is a
linear map from Ec to F((c,∞),R). 4

Exercises for Section 2.1

Note: For convex and balanced vector spaces, see Definition B.2.3 in Appendix B.2.

2.1.1. Let X be a vector space over K. If x, y are in X, the line segment joining x
and y is the set L[x, y] := {x+ t(y − x) | 0 ≤ t ≤ 1 }. Show that L[x, y] is convex for
any x, y in X.

2.1.2. Show that an intersection of convex subsets of a vector space is also convex.

2.1.3. Let X be any vector space over K. Assume that B ⊂ X is balanced and t ∈ K.
Show that tB is also balanced.

2.1.4. Give an example of a nonbalanced subset of a vector space. Must a balanced
subset of a vector space be convex?

2.1.5. Let X be a nonzero vector space over K.

1. Find all nonempty, finite, convex subsets of X.

2. Find all nonempty, finite, balanced subsets of X.

2.1.6. Let C be a convex subset of a vector space X with scalar field K. Show that
for all n ∈ N, whenever x1, . . . , xn are in C and λ1, . . . , λn are nonnegative with∑n
k=1 λk = 1, then

∑n
k=1 λkxk ∈ C.

2.1.7. Let M,N be vector subspaces of a vector space X. Show that M +N is also
a vector subspace of X. When is M ∪N a vector subspace of X?

2.1.8. Let X be a vector space over K and let f : X → K be linear. Show that
f(X) = K if and only if f is not the zero map.

2.1.9. Let X be a vector space over K. A subset C ⊂ X is said to be absolutely
absorbing if for each x ∈ X, there is some t > 0 such that for all α ∈ K with |α| ≤ t,
we have αx ∈ C. It is said to be absorbing if X =

⋃∞
n=1 nC.

1. Show that if C is absolutely absorbing, then 0 ∈ C and C is absorbing.

2. If M is a vector subspace of X, when is M absorbing?

3. If {Bα | α ∈ J } is a collection of absorbing subsets of X, is
⋂
α∈J Bα absorbing?

2.1.10. Let I be the collection of all intervals of the form [α,∞), where α ≥ 0 is a
real number. Then for all I1, I2 in I, we also have I1 ∩ I2 ∈ I. Let

F(I) := { f : I → R | I ∈ I } .

Define scalar multiplication and pointwise addition as in (2.1.2). Let f0 : [0,∞)→ R
be the zero function.


