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1.10.8. Define Q̃ as in Example 1.10.6. Show that Q̃ with the operations of addition
and multiplication defined in (1.10.23) is a field (see Section B.2).

1.10.9. 1. Let [(cn)] ∈ Q̃ and assume that [(cn)] 6= [(0, 0, 0, . . . )]. Show that there is
a rational r0 > 0 and a positive integer N0 with

cn < −r0 for all n ≥ N0 or cn > r0 for all n ≥ N0.

2. For [(an)] and [(bn)] in Q̃, define [(an)] ≤ [(bn)] as in Example 1.10.6. Show

that ≤ is a total order on Q̃.

1.10.10. Prove the least upper bound axiom for Q̃.

1.10.11. Let D be the collection of all x := (xk) of the following form:

There is some τ ∈ {−1, 1}, some nonnegative integer n, and some sequence
(a1, a2, a3, . . . ) in Λ := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} such that

x1 = τn,

x2 = τ
(
n+

a1

10

)
,

x3 = τ
(
n+

a1

10
+

a2

102

)
,

...

Intuitively, each “usual” real number can be represented as some x ∈ D. For instance,
−13.5729 corresponds to x ∈ D with τ = −1, n = 13, a1 = 5, a2 = 7, a3 = 2, a4 =
9, ak = 0 for all k ≥ 5.

Clearly, each member in D is a Cauchy sequence in Q. Define ϕ : D→ Q̃ by

ϕ(x) := [x].

Show that ϕ is onto.

1.11 Compactness

Recall from calculus that a nonempty subset of Rn (or Cn) is compact if it is
closed and bounded. The notion of compactness is of the greatest importance.
One reason is that a continuous function on a compact subset of Rn has a
maximum value and a minimum value (Corollary 1.7.32). This statement is a
powerful tool. To show that a solution to a problem exists, a standard approach
is to look for a function such that the point at which the function achieves its
minimum (or maximum) value would be a solution to the problem. Then, if
you can prove that the domain of the function is compact, you will know that
a solution exists. (See Example 1.12.12 and the proof of part 1 of Proposition
3.7.4 for an illustration of this strategy.)

Compactness is also important because every continuous function on a com-
pact subset of Rn is uniformly continuous.
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These are such powerful results that we want to extend the notion of com-
pactness to arbitrary metric spaces and topological spaces. Indeed, we will see
in Corollary 1.11.16 that a continuous function on a compact topological space
has a maximum value and a minimum value. (This result is used to prove the
spectral theorem for compact operators on a Hilbert space, one of the main
results of functional analysis.) Theorem 1.11.19 says that a continuous function
on a compact metric space is uniformly continuous.

But for these important results to be true, we need a new definition of com-
pactness: “closed and bounded” is not sufficient. In proving that a continuous
function on a compact subset of Rn has maximum and minimum values, we used
the statement that every sequence in a closed and bounded subset M of Rn has
a subsequence converging to some point in M (see the proof of Corollary 1.7.32).
This is not true for closed and bounded sets in an arbitrary metric space; such
a set can have a sequence with no convergent subsequence.

Example 1.11.1. Consider the metric space (l2, d) and let 0 denote the point
(0, 0, 0, . . . ) in l2. Then B̃(0, 1), the closed ball unit in l2 with center 0, is a
closed and bounded subset of l2. Let e1 := (1, 0, 0, . . . ), e2 := (0, 1, 0, 0, . . . ), ....
Then (en) is a sequence in B̃(0, 1) but d(en, em) =

√
2 for all n 6= m. Thus,

(e1, e2, . . . ) has no convergent subsequence. 4

In this section we discuss three definitions of a compact metric space:
1. A metric space X is compact if every sequence in X has a subsequence

converging to a point in X.

2. A metric space is compact if it is totally bounded and complete.

3. A metric space X is compact if every open cover for X contains a finite
subcover.

We will restate these definitions and prove that they are equivalent after
introducing and discussing the concepts “totally bounded” and “open cover”.

We will adopt statement 3 above as our definition of compactness for arbi-
trary topological spaces. Note that any concept (in this section and elsewhere)
initially defined for a topological space X automatically applies to subsets of
X, considered as topological subspaces of X

Totally bounded metric spaces

A metric space X is totally bounded if and only if for every r > 0 it can be
covered by finitely many open balls in X, all of radius r.

Definition 1.11.2 (Totally bounded metric space). A metric space X
is totally bounded if for every r > 0 there is a finite S ⊂ X such that

X =
⋃
z∈S

B(z, r). (1.11.1)


