Chapter 1

Metric and topological
spaces

In this chapter we will study metric spaces — the most general spaces in which
we can measure distances between points. In Chapter 2 we will see how to make
this structure interact with vector space structure to produce normed spaces,
the main actors in functional linear analysis.

We also discuss open and closed sets, topological spaces, and the concepts
of continuity, convergence of sequences, density, separability, and compactness.
The last two sections introduce two important results of functional analysis: the
fixed point theorem and Baire’s category theorem.

1.1 Metrics and metric spaces

The concept of “distance between two points” is needed virtually everywhere in
analysis. Consider the concept of continuity as studied in calculus. A function
f+ R — R is continuous at a € R if for any € > 0, there is a § > 0 such that

|zt —al <d = |f(z) = fla)] <e. (1.1.1)

This says that the distance between f(z) and f(a) can be made arbitrarily small
by requiring z to be sufficiently close to a. Similarly, a sequence (a1, as,...) of
real numbers converges to [ if given € > 0, there is some positive integer N such
that

n>N = la, — | <¢ (1.1.2)

eventually, the distance between the terms of the sequence and [ can be made
arbitrarily small.

If x, y are points in an arbitrary set, how should the distance between them be
defined? What properties are needed to make such a concept both natural and
useful? Consider the set of real numbers. The distance between real numbers a
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and b is defined to be |a —b|. First, |a —b| > 0. Second, |a —b| = |b—a|. Third,
|a — b] = 0 if and only if @ = b. Fourth, for any three numbers a, b, ¢, we have
|a —¢| < |a—b|+ |b—c|. This last property, while less obvious than the others,
is very useful in proving many important results in calculus.

These properties are all natural because of our concept of “distance”. If we
now denote the number |a — b| by d(a,b), these properties can be written in
terms of a distance function d, called a “metric”.

For any set X, let X2 := X x X be the set { (x,y) | x,y € X }.

Definition 1.1.1 (Metric). Let X be any nonempty set. A metric or dis-
tance function on X is a function d: X2 — [0, 00) satisfying the following
properties:

1. d(z,y) = 0 if and only if z = y.

2. Symmetry: d(xz,y) = d(y,z) for all z,y € X.

3. Triangle inequality: d(z,z) < d(z,y) + d(y,z) for all z,y,z € X.

Note that since d is a function from X2 to [0, 00), we always have d(a, b) > 0.

Property 3, the triangle inequality, recognizes the expression “distance as
the crow flies”: the shortest distance between two points is the straight line
connecting them.

Proposition 1.1.2. Let d be a metric on a nonempty set X. Forx,y,z € X,

|d(z,2) — d(y, 2)| < d(z,y). (1.1.3)

Proor. By the triangle inequality,
d(z,z) —d(y,z) <d(z,y) and d(y,z)—d(z,z) <d(y,z) (1.1.4)

for all z,y and z in X. Hence, |d(z, z) — d(y, z)| < d(z,y). O

Often a number of interesting metrics can be defined on a set X; a metric
emphasizes some feature of interest while ignoring others. For instance, let X be
the United States. Three possible metrics are d,;, which measures geographical
distance; d., which measures travel cost; and d;, which measures travel time.
(Using d;, New York City is closer to Los Angeles than it is to Champaign, IL,
unless one can travel by private jet.) Indeed, travel web sites like Orbitz and
Travelocity let the user sort flights by distance in time and distance in money.

More generally, we may think of “distance” as quantifying a difference. What
is the distance between two species of animals? The metric d could measure
how far back one must go to find a common ancestor. Or it could measure the
percentage of DNA the two species have in common. Creationists might say
that the distance is the same between all pairs of species, since they believe
that all species were created at the same time and are therefore unrelated; this
way of measuring distance is the discrete metric.
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Definition 1.1.3 (Discrete metric). The discrete metric on a nonempty
set X is the function d : X? — [0, 00) defined by

_J 0 Jifz=y
d(z,y) .—{ 1 ifa Ay, (1.1.5)

(As noted in Chapter 0, we use the symbol := to denote “equal by def-
inition”.) The discrete metric is an unnatural way to measure geographical
distance or the distance between real numbers. But it is a natural — if uninfor-
mative — way to measure differences: it says that either two points are the same
or they are different.

Remark 1.1.4. Infinitely many metrics can be defined on any nonempty set:
let d be the discrete metric and for k& > 0, define Dy : X? — [0,00) by
Dy(x,y) := kd(x,y). Then Dy, is also a metricon X. A

Definition 1.1.5 (Metric space). A metric space is a pair (X,d), where
X is a nonempty set and d is a metric on X.

When it is clear what the metric is, we may write X rather than (X, d) and
speak of “the distance between a and b in X”. In such a case we always mean
the distance with respect to the metric defined on X.

Some important metric spaces

It will be easy to see that the metrics we consider in this chapter satisfy the
first two properties of Definition 1.1.1, but verifying the triangle inequality can
be tricky; the inequalities we proved in Chapter 0 are indispensable.

Example 1.1.6 (Two different metrics for R™). As discussed in Appendix
B.5, throughout this book, we will denote an element of R™ either by a bold
letter or by a column matrix whose n entries are indexed non-bold versions of
the same letter.

Here are two different metrics we can assign to R™:

1. The function d : R™ x R™ — [0, 00) defined by

d(x,y) = <Z(xi - yi)2> (1.1.6)

i=1

is the standard metric on R™, also called the Fuclidean metric. Showing
that d satisfies the first two properties of Definition 1.1.1 is straightfor-
ward, so we will only show that the triangle inequality is satisfied.
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Let x,y,z be in R™. Then (x; — 2;)? = |v; — 2z|* < (| — vil + |ys — 2i])?
for all 1 <4 <n. Hence, by Minkowski’s inequality (Inequality 0.5),

1

d(x,2) = (Zm - >> < (Z (i — il + [y — zz-|>2> (LL.7)

i=1 i=1
1 1
n 2 n 2
< (Z 2 = yl) + (Z i — zi|2> = d(x,y) +d(y, 2).
i=1 i=1
2. Another metric on R” is the function D : R™ x R™ — [0, 00) defined by
D(x,y) =Y lox — yil- (1.1.8)
k=1

Again, it is clear that the first two properties in Definition 1.1.1 are sat-
isfied. For the triangle inequality, note that if x, y, z are in R™, then

D(x,2) =Y |k — 2kl <D (lox — vl + lyx — 2])
k=1 k=1
n n (1.1.9)
= lzk —yrl + > lyk — 2]
k= k=1

=D(x,y) + D(y, z).

For n = 3, what is the distance between (0, 0,0) and (1, 1,1)? Using the standard
metric, the distance is v/3. Using the metric D above, it is 3.

We could assign other metrics to R™. But unless stated otherwise, when we
consider R™ as a metric space, we mean R™ with the standard Euclidean metric.
Consequently, often we will simply write “the metric space R™”. A

In the next examples we define the sets C", [P, [*°, and Cfa,b] and assign
a metric to each, turning it into a metric space. Like R™, these spaces appear
frequently in this book. When we speak of C", P, [*°, or Cla,b] as a metric
space, we mean the set together with the metric defined below.

Example 1.1.7 (C™ with the standard metric). We denote an element of
21
the set C™ by a bold letter or a column matrix: if z € C", then z :=

Zn
The standard (Euclidean) metric on C™ is the function d : C™ x C* — [0, 00)
defined by

2

d(z,w) =Y |z —w*| . A (1.1.10)
j=1



