
Appendix D

Solutions to odd exercises

D.1 Solutions for Chapter 1

1.1.1 Yes. Let x,y, and z be in Rn. Since |xk− zk| ≤ |xk− yk|+ |yk− zk|, we must
have

max
1≤k≤n

|xk − zk| ≤ max
1≤k≤n

(|xk − yk|+ |yk − zk|) ≤ max
1≤k≤n

|xk − yk|+ max
1≤k≤n

|yk − zk|.

Thus, d∞(x, z) ≤ d∞(x,y) + d∞(y, z).

1.1.3 No. Consider the Euclidean metric d on R defined by d(a, b) := |b− a|. Then
D(0, 2) = 4 > 1 + 1 = D(0, 1) + D(1, 2).

1.1.5 The function df is a metric on X if and only if f is 1–1. Assume first that f
is 1–1. Let x, y, z be in X. Then df (x, y) ≥ 0 and

df (x, y) = 0 ⇐⇒ d(f(x), f(y)) = 0 ⇐⇒ f(x) = f(y) ⇐⇒ x = y.

Also, since d is a metric, we have df (x, y) = d(f(x), f(y)) = d(f(y), f(x)) = df (y, x).
Finally, the triangle inequality for d implies that

df (x, z) = d(f(x), f(z)) ≤ d(f(x), f(y)) + d(f(y), f(z)) = df (x, y) + df (y, z).

On the other hand, assume that f is not 1–1. Then there are distinct a, b in X with
f(a) = f(b). Hence, df (a, b) = d(f(a), f(b)) = 0 so that df is not a metric on X.

1.1.7 Yes. To show that ρ satisfies the triangle inequality, consider the function
f(t) := t

a+t
for all t ∈ [0,∞). Then f ′(t) = a

(a+t)2
> 0 for all t ∈ [0,∞). So f is

increasing on [0,∞). Thus, if u, s, and t are in [0,∞) and u ≤ s + t, then

u

a + u
≤ s + t

a + s + t
=

s

a + s + t
+

t

a + s + t
≤ s

a + s
+

t

a + t
.

Hence, for all x, y and z in X, we must have

d(x, z)

a + d(x, z)
≤ d(x, y)

a + d(x, y)
+

d(y, z)

a + d(y, z)
.
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1.1.9 1. If (xk) is a sequence of complex numbers converging to l ∈ C, then there is
some positive integer N such that |xk− l| < 1 for al k > N . Put M := max1≤k≤N |xk|.
Then |xk| ≤ max{M, |l| + 1} for all k. Hence, (xk) ∈ l∞. The constant sequence
(1, 1, 1, . . . ) is in c but not in lp for any 1 ≤ p <∞.

2. From part 1, c0 ⊂ l∞. However, c0 is not bounded in l∞ because
xn := (n, 0, 0, . . . ) is in c0 for all n ∈ Z, but the distance between xn and x0 in
l∞ is n.

1.1.11 Yes. Let 1 ≤ p and let x := (xk) ∈ lp. Then
∑∞

k=1 |xk|p < ∞. Hence,
necessarily, we must have |xk| → 0 as k →∞. Thus, supk≥1 |xk| <∞ and so, x ∈ l∞.
Hence, lp ⊂ l∞. If p ≤ q < ∞, then since |xk| → 0 as k → ∞, we have |xk|p ≤ |xk|q
for all k sufficiently large. Hence,

∑∞
k=1 |xk|q <∞. Thus, x ∈ lq. Hence, lp ⊂ lq.

1.1.13 Let x, y be in B(x0, r). Then d(x, y) ≤ d(x, x0)+d(x0, y) < r+r = 2r. Hence,
diam B(x0, r) := sup { d(x, y) | x, y in B(x0, r) } ≤ 2r. If d is the discrete metric on X
and 0 < r ≤ 1, then B(x0, r) = {x0}, and thus, diam B(x0, r) = 0.

1.1.15 Yes. To see why, define f : lp → lp by f(x) :=
(

xk
α

)
for all x := (xk) ∈ lp.

Then f is a bijection. Also, D(f(x), f(y)) = d(x,y) because

D(f(x), f(y)) = D
((xk

α

)
,
(yk

α

))
= α

( ∞∑
k=1

∣∣∣xk

α
− yk

α

∣∣∣p) 1
p

=

( ∞∑
k=1

|xk − yk|p
) 1

p

.

1.2.1 No. Let X be any infinite set and let d be the discrete metric on X. Then
B(x, 1

2
) = {x} for any x ∈ X.

1.2.3 Let d be a discrete metric on a nonempty set X. Let S ⊂ X. If S = ∅, then
S is open in (X, d). Assume that S 6= ∅. Let x ∈ S. Then since d(y, x) = 1 for all
y ∈ X with y 6= x, we have B(x, 1

2
) = {x} ⊂ S. Hence, every point in S is an interior

point of S. Thus, S is open in (X, d).

1.2.5 Let (X, d) be a metric space. Then B(x, r) = X for all x ∈ X and all r > 0 if
and only if X contains exactly one point.

1.2.7 Let z ∈ M . Then there is some n such that z = (z1, . . . , zn, 0, 0 . . . ). Let
r > 0. Choose a sequence (εk) of positive numbers such that

∑∞
k=1 εp

k < rp. Set

a := (z1, . . . , zn, ε1, ε2, ε3 . . . ).

Then a ∈ lp and

dp(z,a) =


(∑n

k=1 εp
k

) 1
p

, if p <∞
supk≥1 εk , if p =∞

In either case, dp(z,a) < r. So, B(z, r) contains the point a and a 6∈ M. Thus, since
r > 0 was arbitrary, z is not an interior point of M , so M has no interior points.

1.2.9 Let a := (a1, a2, a3, . . . ) ∈ lp and let r > 0. For each t ∈ (0, r), put

ut := (a1 + t, a2, a3, . . . ).

Then ut ∈ lp and dp(a,ut) = t < r for all t ∈ (0, r). Hence, ut ∈ B(a, r) for all
t ∈ (0, r).


