Vector Calculus, Linear Algebra and
 Differential Forms: A Unified Approach 4th Edition, Second Printing

New errata posted March 11, 2015

Page 96 Example 1.5.25: Equation 1.5.49 would be better as

$$
f\binom{x}{y}= \begin{cases}\frac{|y| e^{-|y| / x^{2}}}{x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0, y \neq 0\end{cases}
$$

Page 117 Two lines before inequality $1.6 .25, b_{j} u^{j}$ should be $\left|b_{j} u^{j}\right|$, since b_{j} and u^{j} are complex numbers, so $b_{j} u^{j}$ isn't a distance.

Page 130 First line: We don't need the triangle inequality here.
Page 138 Exercise 1.7.4: We should have defined the functions in parts b and c to be 0 at 0 :
b. $f(x)=\left\{\begin{array}{ll}x \ln |x| & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array} \quad\right.$ c. $f(x)= \begin{cases}x / \ln |x| & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Page 156 Exercise 1.9: $S, T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, not $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$
Page 202 Figure 2.5.2: The caption for the left side should be "The function $\frac{1}{x^{2}+1 / 10}$, between $x=-1$ and $x=1$ ".

Page 210 Exercise 2.5 .21 has an extraneous H : let $P_{\{\overline{\mathbf{v}}\}} H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ should be let $P_{\{\overline{\mathbf{v}}\}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Page 218 Equation 2.6.29 should have primes on the right:

$$
\left[P_{\overrightarrow{\mathbf{v}}^{\prime} \rightarrow \overrightarrow{\mathbf{e}}}\right]=\left[\overrightarrow{\mathbf{v}}_{1}^{\prime}, \ldots, \overrightarrow{\mathbf{v}}_{n}^{\prime}\right]
$$

Page 243 The top line has an extraneous $Y: \mathbf{f}\binom{X}{Y} Y=\binom{a}{b}$ should be $\mathbf{f}\binom{X}{Y}=\binom{a}{b}$.

Page 249 Bottom of page: We neglected to include $D_{2} D_{1}$ (we will see in Theorem 3.3.9 that $D_{2} D_{1}=D_{1} D_{2}$). So the list should be

$$
\sup \left|D_{1} D_{1} f_{1}\right| \leq 3=c_{1,1,1} \quad \sup \left|D_{1} D_{1} f_{2}\right|=0=c_{2,1,1}
$$

$$
\begin{array}{ll}
\sup \left|D_{1} D_{2} f_{1}\right| \leq 1=c_{1,2,1} & \sup \left|D_{1} D_{2} f_{2}\right|=0=c_{2,2,1} \\
\sup \left|D_{2} D_{1} f_{1}\right| \leq 1=c_{1,1,2} & \sup \left|D_{2} D_{1} f_{2}\right|=0=c_{2,1,2} \\
\sup \left|D_{2} D_{2} f_{1}\right| \leq 1=c_{1,2,2} & \sup \left|D_{2} D_{2} f_{2}\right|=2=c_{2,2,2}
\end{array}
$$

Page 260 First line after Definition 2.10.1: "If a continuous function f is monotone", not "if a function f is monotone".

Page 390 Exercise 3.8: We should have said that $M_{1}(m, n)$ is the subset of Mat (m, n) consisting of matrices of rank 1 .

Page 441 Margin note, last line: upper limit, not upper integral. Equation 4.5.10: the integral on the left should be over P, not over \mathbb{R}^{3} :

$$
\int_{P} f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)|d x d y d z|=\int\left(\int\left(\int f d x\right) d y\right) d z
$$

Page 505 Equation 4.11.45: "where $f_{i}(\mathbf{x})=\ldots$ ", not "where $f_{i}=\ldots$ ".
Page 509 Theorem 4.11.19, line before equation 4.11.67: We should have said "then f is L-integrable", not "then f is integrable".

Page 579 Example 6.3.6: "(i.e., a, b, and c are all nonzero)" not "(i.e., at least one of a, b, and c does not vanish)".

Page 580 Example 6.3.7, first line: X should be S
Page 611 The last sentence of the paragraph beginning "Condition 1 of Definition 6.6.6" should be
"This follows from Proposition 5.2.2; indeed this set is a subset of finitely many affine subspaces of dimension $k-2$."

Page 658 The cross product in the caption to Figure 6.11 .4 should be $h \overrightarrow{\mathbf{j}}(\mathbf{y}) \times \frac{\mathbf{x}-\mathbf{y}}{|\mathbf{x}-\mathbf{y}|^{3}}$.

Page 681 Exercise 6.26 should read:
Show that the electromagnetic field of a charge q moving in the direction of the x-axis at constant speed v is

$$
\begin{aligned}
& \overrightarrow{\mathbf{E}}=\frac{q \gamma}{4 \pi\left((\gamma x-\gamma v t)^{2}+y^{2}+z^{2}\right)^{3 / 2}}\left[\begin{array}{c}
x-v t \\
y \\
z
\end{array}\right] \\
& \overrightarrow{\mathbf{B}}=\frac{v}{c} \frac{q \gamma}{4 \pi\left((\gamma x-\gamma v t)^{2}+y^{2}+z^{2}\right)^{3 / 2}}\left[\begin{array}{r}
0 \\
-z \\
y
\end{array}\right], \quad \text { where } \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
\end{aligned}
$$

Page 701 Two lines before the exercises:

$$
\left|\mathbf{y}-\mathbf{a}_{0}\right| \leq 2\left|\overrightarrow{\mathbf{h}}_{0}\right|, \quad \text { not } \quad\left|\mathbf{y}-\mathbf{a}_{0}\right| \leq 2 \overrightarrow{\mathbf{h}}_{0}
$$

Page 702 Exercise A5.1: In the second line, $0<\alpha$, not $0 \leq \alpha$.
Page 710 Two lines before the remark, " $\mathbf{F}\binom{\mathbf{x}}{\mathbf{y}}$ implicitly defines \mathbf{x} " should be " $\mathbf{F}\binom{\mathbf{x}}{\mathbf{y}}=\mathbf{0}$ implicitly defines \mathbf{x} ".

Page 712 Last sentence of the proof: "the expression on the first line is symmetric", not "the expression on the right is symmetric".

Page 719 Equation A11.20: in the second line, \in should be \subset.
Page 731 Three lines before equation A15.3: "since Z, as a function of X and Y, starts with quadratic terms", not "since Z as a function of X and Y that starts with quadratic terms".

Page 745 In the last line, "i.e., k is the first column" should be "i.e., \mathbf{a}_{k} is the first column".

Page 746 Two lines before equation A19.4: $A_{1, i}$ should be $A_{i, 1}$. In the same line, $\widetilde{A}_{1, i}$ should be $\widetilde{A}_{i, 1}$, as it should in equation A19.4. Recall that $A_{i, j}$ is A with the i th row and j th column removed.

Page 749 Equation A19.15: In the first matrix, \widetilde{B} should be \widetilde{Q}.
Page 751 The right side of inequality A20.4 needs a factor of 2 in the denominator: $K \frac{\sqrt{n}}{2 \cdot 2^{N}}$

Page 754 Margin note: The third line of the equation that starts $\operatorname{vol}_{n} \Phi(C)$ has an extra C that shouldn't be there:

$$
=(1+\epsilon)^{n}\left|\operatorname{det}\left[\mathbf{D} \Phi\left(\mathbf{z}_{C}\right)\right] C\right| \operatorname{vol}_{n} C .
$$

should be

$$
=(1+\epsilon)^{n}\left|\operatorname{det}\left[\mathbf{D} \Phi\left(\mathbf{z}_{C}\right)\right]\right| \operatorname{vol}_{n} C .
$$

Page 760 6th line: Using our current notation, $L_{\chi_{A_{k}}}$ should be $L_{\mathbf{1}_{A_{k}}}$. In the second margin note, 3 rd line, $\int_{Q} \inf \left(f_{k}(\mathbf{x}), K\right)$ should be $\inf \left(f_{k}(\mathbf{x}), K\right)$

Page 788 Three lines from the bottom: $\mathbf{d} \mathbf{f}^{*}=\mathbf{f}^{*} \mathbf{d}, \operatorname{not} d \mathbf{f}^{*}=\mathbf{f}^{*} d$.
Page 781 When reprinting Theorem 6.7.2, we omitted part 3: The exterior derivative of a constant form is 0 .

Page 797 In equation A26.33, $\left|d^{k} \mathbf{x}\right|$ should be $\left|d^{k-1} \mathbf{x}\right|$. Equation A26.34 should be
$\int_{W}\left|d^{k-1} \mathbf{w}\right| \underbrace{=}_{\text {Def. 5.3.1 }} \int_{W}\left|d^{k-1} \mathbf{x}\right|\left(P_{\delta(\mathbf{w})}\left(D_{1} \delta(\mathbf{w}), \ldots, D_{k-1} \delta(\mathbf{w})\right)\left|d^{k-1} \mathbf{w}\right|\right.$
The last four lines (beginning with "The integral") should be replaced by

The integral

$$
\int_{W}\left|d^{k-1} \mathbf{w}\right| \underbrace{=}_{\text {Def. 5.3.1 }} \int_{W} \underbrace{\left|d^{k-1} \mathbf{x}\right|\left(P_{\delta(\mathbf{w})}\left(D_{1} \delta(\mathbf{w}), \ldots, D_{k-1} \delta(\mathbf{w})\right)\right.}_{\text {this function of } \mathbf{w} \text { is the dominating function }}\left|d^{k-1} \mathbf{w}\right|
$$

is finite by the hypothesis that $\partial_{M}^{s} X$ has finite $(k-1)$-volume, and we can use the "dominating function" above to prove that

$$
\lim _{\epsilon \rightarrow 0} \int_{W_{\epsilon}}\left|d^{k-1} \mathbf{w}\right|=\int_{W}\left|d^{k-1} \mathbf{w}\right|
$$

Page 802 One line before equation A26.45, "of radius $|[\mathbf{D} f(\mathbf{x})]|$ " should be "of radius $|[\mathbf{D} f(\mathbf{x})]| r$ ".

Nonmathematical Typos

Page 102 First line after equation 1.5.67: proposition 1.4.11, not proposition 1.4 .11 b

Page 1162 lines before Figure 1.6.9: there is an extra absolute value; it should be $\rho<\left|b_{0} / b_{j}\right|^{1 / j}$, not $\rho<\left|b_{0} / b_{j}\right|^{1 / j} \mid$.

Page 140 Top margin note: "writing \mathbf{f} and \mathbf{g} as $\overrightarrow{\mathbf{f}}$ and $\overrightarrow{\mathbf{g}} "$, not"... in as $\overrightarrow{\mathbf{f}}$ and $\overrightarrow{\mathbf{g}}$ "

Page 143 middle of page, part 7: "We do not need to prove", not "We do not need prove".

Page 219 Equations 2.6.33 and 2.6.34: In the vectors the entry a_{k}, j should be $a_{k, j}$.

Page 241 Example 2.8.10: The functions f_{1} and f_{2} should not be bold.
Page 242 In equation 2.8.45, \mathbf{F}, not \mathbf{f}.
Page 261 Lower margin note: \mathbf{f}^{-1} not f^{-1}.
Page 306 Exercise 3.1.21, part b: a space is needed before "is a smooth curve".

Page 368 First margin note: "be be impressed" should be "be impressed".

Page 670 First line of Example 6.12.3: given in equation 6.7.17, not given in Example 6.7.17.

Page 676 First margin note: $d f$ should be $\mathbf{d} f$.
Page 693 First line: \mathbf{x}_{m}, x_{m+1} should be $\mathbf{x}_{m}, \mathbf{x}_{m+1}$.

