VECTOR CALCULUS, LINEAR ALGEBRA AND DIFFERENTIAL FORMS: A UNIFIED APPROACH 4TH EDITION, SECOND PRINTING

New Errata Posted March 11, 2015

PAGE 96 Example 1.5.25: Equation 1.5.49 would be better as

$$f\begin{pmatrix} x\\ y \end{pmatrix} = \begin{cases} \frac{|y|e^{-|y|/x^2}}{x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0, \ y \neq 0 \end{cases}$$

PAGE 117 Two lines before inequality 1.6.25, $b_j u^j$ should be $|b_j u^j|$, since b_j and u^j are complex numbers, so $b_j u^j$ isn't a distance.

PAGE 130 First line: We don't need the triangle inequality here.

PAGE 138 Exercise 1.7.4: We should have defined the functions in parts b and c to be 0 at 0:

b.
$$f(x) = \begin{cases} x \ln |x| & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 c. $f(x) = \begin{cases} x/\ln |x| & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

PAGE 156 Exercise 1.9: $S, T : \mathbb{R}^3 \to \mathbb{R}^3$, not $\mathbb{R}^4 \to \mathbb{R}^3$

PAGE 202 Figure 2.5.2: The caption for the left side should be "The function $\frac{1}{x^2 + 1/10}$, between x = -1 and x = 1".

PAGE 210 Exercise 2.5.21 has an extraneous H: let $P_{\{\overline{\mathbf{v}}\}}H:\mathbb{R}^n\to\mathbb{R}^m$ should be let $P_{\{\overline{\mathbf{v}}\}}:\mathbb{R}^n\to\mathbb{R}^m$.

PAGE 218 Equation 2.6.29 should have primes on the right:

$$[P_{\vec{\mathbf{v}}'\to\vec{\mathbf{e}}}] = [\vec{\mathbf{v}}_1',\ldots,\vec{\mathbf{v}}_n'].$$

PAGE 243 The top line has an extraneous Y: $\mathbf{f}\begin{pmatrix}X\\Y\end{pmatrix}Y = \begin{pmatrix}a\\b\end{pmatrix}$ should be $\mathbf{f}\begin{pmatrix}X\\Y\end{pmatrix} = \begin{pmatrix}a\\b\end{pmatrix}$.

PAGE 249 Bottom of page: We neglected to include D_2D_1 (we will see in Theorem 3.3.9 that $D_2D_1 = D_1D_2$). So the list should be

$$\sup |D_1 D_1 f_1| \le 3 = c_{1,1,1} \qquad \sup |D_1 D_1 f_2| = 0 = c_{2,1,1}$$

$\sup D_1 D_2 f_1 \le 1 = c_{1,2,1}$	$\sup D_1 D_2 f_2 = 0 = c_{2,2,1}$
$\sup D_2 D_1 f_1 \le 1 = c_{1,1,2}$	$\sup D_2 D_1 f_2 = 0 = c_{2,1,2}$
$\sup D_2 D_2 f_1 \le 1 = c_{1,2,2}$	$\sup D_2 D_2 f_2 = 2 = c_{2,2,2}.$

PAGE 260 First line after Definition 2.10.1: "If a continuous function f is monotone", not "if a function f is monotone".

PAGE 390 Exercise 3.8: We should have said that $M_1(m, n)$ is the subset of Mat (m, n) consisting of matrices of rank 1.

PAGE 441 Margin note, last line: upper limit, not upper integral. Equation 4.5.10: the integral on the left should be over P, not over \mathbb{R}^3 :

$$\int_{P} f\begin{pmatrix} x\\ y\\ z \end{pmatrix} |dx \, dy \, dz| = \int \left(\int \left(\int f \, dx \right) dy \right) dz.$$

PAGE 505 Equation 4.11.45: "where $f_i(\mathbf{x}) = \dots$ ", not "where $f_i = \dots$ ".

PAGE 509 Theorem 4.11.19, line before equation 4.11.67: We should have said "then f is L-integrable", not "then f is integrable".

PAGE 579 Example 6.3.6: "(i.e., a, b, and c are all nonzero)" not "(i.e., at least one of a, b, and c does not vanish)".

PAGE 580 Example 6.3.7, first line: X should be S

/ \

PAGE 611 The last sentence of the paragraph beginning "Condition 1 of Definition 6.6.6" should be

"This follows from Proposition 5.2.2; indeed this set is a subset of finitely many affine subspaces of dimension k - 2."

PAGE 658 The cross product in the caption to Figure 6.11.4 should be $h\vec{\mathbf{j}}(\mathbf{y}) \times \frac{\mathbf{x}-\mathbf{y}}{|\mathbf{x}-\mathbf{y}|^3}$.

PAGE 681 Exercise 6.26 should read:

Show that the electromagnetic field of a charge q moving in the direction of the *x*-axis at constant speed v is

$$\begin{split} \vec{\mathbf{E}} &= \frac{q\gamma}{4\pi \Big((\gamma x - \gamma vt)^2 + y^2 + z^2 \Big)^{3/2}} \begin{bmatrix} x - vt \\ y \\ z \end{bmatrix} \\ \vec{\mathbf{B}} &= \frac{v}{c} \frac{q\gamma}{4\pi \Big((\gamma x - \gamma vt)^2 + y^2 + z^2 \Big)^{3/2}} \begin{bmatrix} 0 \\ -z \\ y \end{bmatrix}, \quad \text{where } \gamma = \frac{1}{\sqrt{1 - v^2/c^2}} \end{split}$$

PAGE 701 Two lines before the exercises:

$$|\mathbf{y} - \mathbf{a}_0| \le 2|\vec{\mathbf{h}}_0|, \quad \text{not} \quad |\mathbf{y} - \mathbf{a}_0| \le 2\vec{\mathbf{h}}_0.$$

PAGE 702 Exercise A5.1: In the second line, $0 < \alpha$, not $0 \le \alpha$.

PAGE 710 Two lines before the remark, " $\mathbf{F}\begin{pmatrix}\mathbf{x}\\\mathbf{y}\end{pmatrix}$ implicitly defines \mathbf{x} " should be " $\mathbf{F}\begin{pmatrix}\mathbf{x}\\\mathbf{y}\end{pmatrix} = \mathbf{0}$ implicitly defines \mathbf{x} ".

PAGE 712 Last sentence of the proof: "the expression on the first line is symmetric", not "the expression on the right is symmetric".

PAGE 719 Equation A11.20: in the second line, \in should be \subset .

PAGE 731 Three lines before equation A15.3: "since Z, as a function of X and Y, starts with quadratic terms", not "since Z as a function of X and Y that starts with quadratic terms".

PAGE 745 In the last line, "i.e., k is the first column" should be "i.e., \mathbf{a}_k is the first column".

PAGE 746 Two lines before equation A19.4: $A_{1,i}$ should be $A_{i,1}$. In the same line, $\tilde{A}_{1,i}$ should be $\tilde{A}_{i,1}$, as it should in equation A19.4. Recall that $A_{i,j}$ is A with the *i*th row and *j*th column removed.

PAGE 749 Equation A19.15: In the first matrix, \tilde{B} should be \tilde{Q} .

PAGE 751 The right side of inequality A20.4 needs a factor of 2 in the denominator: $K \frac{\sqrt{n}}{2.2N}$

PAGE 754 Margin note: The third line of the equation that starts $\operatorname{vol}_n \Phi(C)$ has an extra C that shouldn't be there:

$$= (1+\epsilon)^n |\det[\mathbf{D}\Phi(\mathbf{z}_C)]C| \operatorname{vol}_n C.$$

should be

$$= (1+\epsilon)^n |\det[\mathbf{D}\Phi(\mathbf{z}_C)]| \operatorname{vol}_n C.$$

PAGE 760 6th line: Using our current notation, $L_{\chi_{A_k}}$ should be $L_{\mathbf{1}_{A_k}}$. In the second margin note, 3rd line, $\int_Q \inf(f_k(\mathbf{x}), K)$ should be $\inf(f_k(\mathbf{x}), K)$

PAGE 788 Three lines from the bottom: $\mathbf{df}^* = \mathbf{f}^* \mathbf{d}$, not $d\mathbf{f}^* = \mathbf{f}^* d$.

PAGE 781 When reprinting Theorem 6.7.2, we omitted part 3: The exterior derivative of a constant form is 0.

PAGE 797 In equation A26.33, $|d^k \mathbf{x}|$ should be $|d^{k-1}\mathbf{x}|$. Equation A26.34 should be

$$\int_{W} |d^{k-1}\mathbf{w}| = \int_{W} |d^{k-1}\mathbf{x}| \Big(P_{\delta(\mathbf{w})}(D_{1}\delta(\mathbf{w}), \dots, D_{k-1}\delta(\mathbf{w}) \Big) |d^{k-1}\mathbf{w}|$$

The last four lines (beginning with "The integral") should be replaced by

The integral

$$\int_{W} |d^{k-1}\mathbf{w}| \underbrace{=}_{\text{Def. 5.3.1}} \int_{W} \underbrace{|d^{k-1}\mathbf{x}| \left(P_{\delta(\mathbf{w})}(D_{1}\delta(\mathbf{w}), \dots, D_{k-1}\delta(\mathbf{w})\right)}_{\text{this function of }\mathbf{w} \text{ is the dominating function}} |d^{k-1}\mathbf{w}| \quad A26.34$$

is finite by the hypothesis that $\partial_M^s X$ has finite (k-1)-volume, and we can use the "dominating function" above to prove that

$$\lim_{\epsilon \to 0} \int_{W_{\epsilon}} |d^{k-1}\mathbf{w}| = \int_{W} |d^{k-1}\mathbf{w}|.$$

PAGE 802 One line before equation A26.45, "of radius $|[\mathbf{D}f(\mathbf{x})]|$ " should be "of radius $|[\mathbf{D}f(\mathbf{x})]|r$ ".

Nonmathematical Typos

PAGE 102 First line after equation 1.5.67: proposition 1.4.11, not proposition 1.4.11 b

PAGE 116 2 lines before Figure 1.6.9: there is an extra absolute value; it should be $\rho < |b_0/b_j|^{1/j}$, not $\rho < |b_0/b_j|^{1/j}|$.

PAGE 140 Top margin note: "writing **f** and **g** as $\vec{\mathbf{f}}$ and $\vec{\mathbf{g}}$ ", not "... in as $\vec{\mathbf{f}}$ and $\vec{\mathbf{g}}$ "

PAGE 143 middle of page, part 7: "We do not need to prove", not "We do not need prove".

PAGE 219 Equations 2.6.33 and 2.6.34: In the vectors the entry a_k, j should be $a_{k,j}$.

PAGE 241 Example 2.8.10: The functions f_1 and f_2 should not be bold.

PAGE 242 In equation 2.8.45, \mathbf{F} , not \mathbf{f} .

PAGE 261 Lower margin note: \mathbf{f}^{-1} not f^{-1} .

PAGE 306 Exercise 3.1.21, part b: a space is needed before "is a smooth curve".

PAGE 368 First margin note: "be be impressed" should be "be impressed".

PAGE 670 First line of Example 6.12.3: given in equation 6.7.17, not given in Example 6.7.17.

PAGE 676 First margin note: df should be df.

PAGE 693 First line: \mathbf{x}_m, x_{m+1} should be $\mathbf{x}_m, \mathbf{x}_{m+1}$.