
Appendix D8

Ergodic flow, Hopf’s argument, and

Mostow rigidity

In this appendix we give the original proof of Mostow’s rigidity theorem
[64], [65]. It isn’t easier or shorter than the one given in Chapter 12, but it
brings up the importance of knowing that a Kleinian group acts ergodically
on the limit set, an important statement in its own right. It also provides an
excuse for introducing the ergodic theorem and Hopf’s ergodicity argument.
First we restate Mostow’s rigidity theorem:

inTheorem 12.4.1 (Mostow’s rigidity theorem) Let M and N be
compact hyperbolic 3-manifolds, and let f : M ! N be a homotopy
equivalence. Then f is homotopic to a unique isometry.

The key step in both proofs is that a Beltrami form on P1 invariant
under the fundamental group of a hyperbolic 3-manifold M of finite volume
vanishes. In Chapter 12 we proved this using McMullen’s rigidity theorem
(Theorem 12.3.1), based on the Lebersgue density theorem. Here we use
Corollary D8.3.4, based on the ergodic theorem for flows.1

The ergodic theorem for maps and the ergodic theorem for flows are
central results of measure theory. I believe both theorems, as well as the
Poincaré recurrence theorem, should be part of a first-year graduate course
in real analysis. Since they are not, I provide proofs in Section D8.1.

Ergodic theory is concerned with measure-preserving maps and flows.
Classical mechanics provides an essential source of such flows (and Poincaré
sections of Hamiltonian flows are an essential source of such maps): Hamil-
tonian flows and the special case of geodesic flows preserve the Hamiltonian
measure. In Section D8.2 we discuss geodesic flows and Hamiltonian flows.

The ergodicity of Hamiltonian flows is of central interest in classical
mechanics. Eberhardt Hopf found an argument that sometimes proves
ergodicity; in particular it proves the ergodicity of the geodesic flow on
compact manifolds of negative curvature, including hyperbolic manifolds.
We discuss Hopf’s argument in Section D8.3.

1Reminiscing in the Yale News in 2013, Mostow recalled the moment he sud-
denly thought, “Use ergodicity! . . . The final idea jumped out at me as I was
waiting in my car at a red light at the corner of Whalley Avenue and Fitch
Street. I get a high every time that I pass that intersection.”
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Many (perhaps most) proofs that a transformation is ergodic consist of
appropriate modifications of Hopf’s idea. Crucially for us, Appendix D9 on
Teichmüller geodesic flow is a delicate application of Hopf’s idea.

D8.1 Ergodicity: a crash course

For those who need it, here we will briefly discuss ergodicity and state and
prove the ergodic theorem for maps, the ergodic theorem for flows, and the
Poincaré recurrence theorem.

Some basic definitions

A measure space is a set X together with

• a �-algebra A of subsets of X

• a function µ : A! [0,1] that is �-additive: if i 7! Ai is a sequence
of mutually disjoint elements of A, then

µ
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!

=
1X
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µ(Ai).

A probability space is a measure space X such that µ(X) = 1.
Elements of A are called measurable sets (more precisely, µ-measurable).

If A is a �-algebra of subsets of X, and B is a �-algebra of subsets of Y , then
f : (X,A)! (Y,B) is measurable if for all B 2 B, we have f�1(B) 2 A.

If µ is a measure on (X,A), then f⇤µ (the push forward of µ by f) is the
measure on (Y,B) defined by f⇤µ(B) = µ(f�1(B)).

In geometrical applications the space X is often a topological space as
well as a measure space and A is the Borel �-algebra; references to A are
often omitted. In particular, R is assumed to carry the Borel �-algebra
unless explicitly stated otherwise.

Probabilists need to be more careful than the geometers: defining con-
ditional probability involves �-algebras. The proof of the ergodic theorem
borrowed from [45] is due the probabilist Jacques Neveu and uses di↵erent
�-algebras in a crucial way, so we will be careful about �-algebras.

A measurable map � : (X,A, µ)! (Y,B, ⌫) of measure spaces is measure
preserving if �⇤µ = ⌫. If the domain and codomain of � are the same, then
µ is called an invariant measure under �.

Below R⇥X carries the �-algebra generated by sets B ⇥A with A 2 A
and B ⇢ R Borel. A flow on X is a measurable map ' : R⇥X ! X such
that '(0, x) = x for all x 2 X and '(t1 + t2, x) = '(t2, ('(t1, x)) for all
t1, t2 2 R. The flow ' is measure preserving if it is measurable and for all
t 2 R, the map x 7! '(t, x) is measure preserving.

Ergodic theory is concerned with measure-preserving maps and flows.


