
Appendix D4

Arithmetic Kleinian groups

In this appendix we present more examples of arithmetic Kleinian groups,
which will come in three flavors, discussed in Sections D4.2–D4.4:

1. the Bianchi group associated to Q(
p
�5), illustrating the role of

the ideal class group of a number field, and how it relates to the
geometry of fundamental domains

2. an arithmetic Kleinian group � with H3/� compact, coming from a
quadratic form (this is an analogue of Example 3.9.16 concerning a
Fuchsian arithmetic group with compact 2-dimensional quotient)

3. an example provided by a quaternion algebra, which illustrates the
most general construction of arithmetic Kleinian groups

We start with number fields. This material is really part of the pre-
requisites; it is included for the benefit of readers whose algebraic number
theory may be a bit rusty, but mainly to emphasize the di↵erences between
algebraic number fields and quaternion algebras. Even these elementary
results are surprisingly nontrivial. I believe most of the material is due to
Dedekind; my presentation will be fairly close to that of Samuel [75].

D4.1Algebraic number theory: a crash course

An algebraic number field is a field K containing Q such that K as a vector
space over Q has finite dimension d, known as the degree of K over Q (see
Exercise D4.1.2). We denote this degree by [K : Q]. When Q ⇢ K0 ⇢ K,
the algebraic number field K can also be viewed as a vector space over K0;
its dimension as a vector space over K0 is denoted by [K : K0].

In the setting of algebraic number theory, it is often (even usually) the
case that there is more than one possible field of scalars over which K will
be a vector space. It almost always matters which field is being used.

Exercise D4.1.1 Show that [K : Q] = [K : K0] [K0 : Q]. }

Exercise D4.1.2 Let Q[X] be the ring of polynomials with coe�cients
in Q, and let p 2 Q[X] be an irreducible polynomial of degree d generating
an ideal (p). Show that (p) is a maximal ideal in the ring Q[X], and that
Q[X]/(p) is an algebraic number field of degree d over Q. }

We will see in a moment that all algebraic number fields are of this form.
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Embeddings of number fields

inTheorem D4.1.3 Let K be an algebraic number field of degree d. There
are then at least d distinct embeddings �i : K ! C.

Proof First assume K = Q[X]/(p) for some irreducible polynomial p
of degree d. By the fundamental theorem of algebra, p admits exactly d
distinct complex roots z1, . . . , zd. We can then define �i by �i(X) = zi.
These define embeddings K ! C; they are distinct, and they are the only
such embeddings, since any � : K ! C must map X to a root of p.

For the general case, let K be an algebraic number field of degree d
over Q, and let K0 ⇢ K be a subfield of maximal degree d0 that admits at
least d0 distinct embeddings �1, . . . ,�d0 : K0 ! C. We will show that the
hypothesis d0 < d leads to a contradiction.

If d0 < d, then there exists � 2 (K �K0), which must satisfy a minimal
polynomial p� over K0, of some degree d00 > 1. We will extend each �i

to �i,j : K0[X]/(p�) ! C for 1  j  d00 as follows. The coe�cients
of p� are elements of K0, not complex numbers. Applying �i to these
coe�cients gives us a complex polynomial p�,i with d00 distinct complex
roots zi,1, . . . , zi,d00 . We can extend �i by setting �i,j(X) := zi,j . As above,
the �i,j are distinct: if �i1,j1 = �i2,j2 , then �i1,j1 and �i2,j2 coincide on
K0, so i1 = i2, and then ji = j2 since the roots of p�,i are distinct. Thus
K0[X]/(p�) ⇢ K is a subfield of degree d0d00 > d0 that admits at least
d0d00 distinct embeddings into C, contradicting the hypothesis that d0 is
maximal. ⇤

inCorollary D4.1.4 Let K be an algebraic number field of degree d. Then
there exists ↵ 2 K such that K = Q(↵), i.e., the smallest subfield of K
that contains ↵ is all of K. If p is the minimal polynomial of ↵ over Q,
there exists a unique isomorphism Q[X]/(p) ! K taking the class of X
to ↵.

Such an ↵ is called a primitive element of K over Q.

Proof Let �1, . . . ,�d be distinct embeddings K ! C, and let Ki,j be
the subfield where �i = �j , for i 6= j in {1, . . . , d}. As a vector space
Ki,j has dimension strictly less than d. No vector space over an infinite
field is the union of finitely many subspaces of lower dimension, so there
exists ↵ 2 K � [i6=jKi,j . The complex numbers �i(↵) are distinct, so
the minimal polynomial p of ↵ over Q has at least d distinct roots in C,
namely the �i(↵), for i 2 {1, . . . , d}. Thus [Q(↵), Q] � d, but Q(↵) ⇢ K so
[Q(↵), Q]  d; we deduce that Q(↵) = K. Thus deg p = d and since p is a
minimal polynomial it is irreducible, so Q[X]/(p) is a field. Since p(↵) = 0,


