
Appendix D2

The Margulis lemma: another proof

We proved the Margulis lemma in Section 11.8; here we give a di↵erent
proof. First we restate the theorem.

inTheorem D2.1 (Margulis lemma restated) There exists a number
r0 > 0 such that for any torsion-free discrete subgroup � ⇢ Aut H3 and
any point p 2 H3, the elements � 2 � such that d(p, �(p)) < r0 generate
an elementary group.

The proof here is not simpler or shorter, but I feel that it is more natural.
Certainly it works far more generally: it works for hyperbolic spaces of any
dimension, whereas the proof in Section 11.8 uses Jorgensen’s inequality
and so works only for PSL2 C. But we will restrict the proof to H3, since
we haven’t developed the necessary preliminaries for the general case.

The idea of the proof is simple. If G is a Lie group, then the map
G⇥G ! G given by (f, g) 7! [f, g] fixes the identity, and its Taylor series
at the identity starts with quadratic terms. Hence there is a neighborhood
U of the identity such that the sequence

U0 = U, U1 = [U,U ], U2 = [U, [U,U ]], . . . D2.1

is a decreasing sequence with intersection reduced to the identity. If � ⇢ G
is discrete, then there exists n such that all n-fold brackets of elements of
� \ U are the identity. It isn’t a big step to see that the elements of � \ U
generate a nilpotent group.

Of course, the Margulis lemma is not about the subgroup of � generated
by the elements close to the identity: it is about those that move a particular
point p 2 H3 a small amount. These can include elliptic elements far from
the identity. Thus it concerns the subgroup generated by elements of �
close to the stabilizer Stab(p) of p, which is a compact subgroup. Most of
the proof is reducing a neighborhood of Stab(p) to a neighborhood of the
identity.

Three preliminary lemmas

We will require several lemmas, each interesting in its own right. A group
G is solvable if there exists a finite chain of subgroups

G = G0 � G1 � · · · � Gk = {1} D2.2

such that each Gi+1 is normal in Gi and Gi/Gi+1 is commutative.
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Lemma D2.2 Every torsion-free solvable Kleinian group G ⇢ Aut(H3) is
elementary.

Proof We will work by induction on the length of the chain of subgroups
G � [G,G] � [[G,G], [G,G]] � · · · � {I}; by the inductive hypothesis, we
can assume H := [G,G] is elementary. Therefore the limit set ⇤H of H
consists of one or two points, and these are the only finite orbits of H in @H3.
For any g 2 G and h 2 H, we have g�1hg 2 H, hence g�1hg⇤H = ⇤H ,
hence h(g⇤H) = g(⇤H). In particular, g(⇤H) is also invariant under H,
hence equal to ⇤H .

This says that ⇤H is a closed subset of @H3, invariant under G, which
therefore contains ⇤G (in fact ⇤H = ⇤G). Thus G is elementary. ⇤

Lemma D2.3 In any Lie group G, there exists a neighborhood U of the
identity element I such that any discrete subgroup � of G generated by
� \ U is nilpotent. In particular � is solvable.

Proof Consider commutation as a map from G ⇥ G to G taking (x, y) to
[x, y] := xyx�1y�1, and consider the Taylor expansion of this map at the
point (I, I). The map is constant on both G⇥{I} and {I}⇥G, so there are
no linear terms. Once a norm is fixed on the Lie algebra of G, and hence
on any neighborhood V of the identity for which the exponential map is a
di↵eomorphism (and which has compact closure), there is a constant C � 1
such that |[x, y]|  C|x||y| for all x, y 2 V . Now choose U ⇢ V such that
|x| < 1/(2C) for all x 2 U , and such that U�1 = U .

Let S0 = S�1
0 denote the elements of � that are contained in U , and

define Sn recursively to be the set of commutators ghg�1h�1 with g 2 S0

and h 2 Sn�1. It is easy to prove by induction that the elements of Sn have
norm less than 1/(2n+1C). Hence, for su�ciently large n, we have Sn = I.
Applying the identity [x, yz] = [x, y][[y, [x, z]][x, z] repeatedly, we can prove
that any n-fold commutator formed from finite products of elements of
S0 is a product of m-fold commutators of elements of S0, with m � n,
hence equals the identity. Thus the lower central series of � terminates,
establishing that � is nilpotent. ⇤

Lemma D2.4 If G is a Kleinian group and H ⇢ G is a subgroup of finite
index, then their limit sets are equal: ⇤H = ⇤G. In particular, any group
that contains an elementary subgroup of finite index is itself elementary.

Proof The inclusion ⇤H ⇢ ⇤G is immediate from the definition of the
limit set. It is easy to see that ⇤G is the union of the accumulation points
of orbits of a point in H3 under each of the right cosets of H in G, so ⇤G

is a finite union of translates of ⇤H .
Thus if ⇤H = ;, then ⇤G = ; and the result is true in that case.


